Constructive axiomatic for the real numbers

Jean-Marie Madiot, Pierre-Marie Pédrot

Coqtail Junior Laboratory ENS Lyon

August, 26th

Real analysis in Coq

Two major libraries of real analysis out there:

- Coq stdlib: highly classical
- □ C-CoRN: designed to be constructive
- Libraries to prove analysis theorems
- There already have been attempts to mix both

Real analysis in Coq

Two major libraries of real analysis out there:

- Coq stdlib: highly classical
- □ C-CoRN: designed to be constructive
- Libraries to prove analysis theorems
- There already have been attempts to mix both
- Some other effective implementations, generally from the folks in computer arithmetic:
 - In general, not libraries of theorems
 - More about proved computation on real numbers

Coq stdlib

Pros

- Simple and abstract formalism
- Designed with speed of development on mind
- Usual proofs are easy to write
- $\hfill\square$ Shipped with Coq \rightsquigarrow important base of users

Coq stdlib

Pros

- Simple and abstract formalism
- Designed with speed of development on mind
- Usual proofs are easy to write
- $\hfill\square$ Shipped with Coq \rightsquigarrow important base of users

Cons

- □ lacks a lot of basic results (on sequences, etc.)
- names quite messy: lemmas Riemann_tech24 and alike
- □ globally badly designed library (Ranalysis_i for $0 \le i \le 4$)
- □ worse than highly classical:

$$\forall A : \operatorname{Prop}, \{\neg \neg A\} + \{\neg A\}$$

 $\{\forall n, Pn\} + \{\exists n, \neg(Pn)\}$ if $P : \texttt{nat} \rightarrow \texttt{Prop}$ decidable

C-CoRN

Pros

- □ Constructive: compute with your proofs!
- Huge database of intermediate structures
- □ A lot of nice results

C-CoRN

Pros

- □ Constructive: compute with your proofs!
- Huge database of intermediate structures
- A lot of nice results

Cons

- Constructive: make mathematicians flee away!
 - \hookrightarrow "we want real maths!"
- □ Too complicated to use (from compilation to dependency hell)
- Oldish and overly module-relying Coq
- Not really maintained anymore

Manifesto

We want to keep the best of both worlds:

- From stdlib:
 - Simplicity and abstraction
 - \hookrightarrow that means fresh axiomatic construction
 - Ability to do classical proofs
 - \hookrightarrow fancy axioms in Prop accepted
 - \hookrightarrow excluded middle, choice axiom...
 - \hookrightarrow may port classical tactics (fourier, psatz...)

Manifesto

We want to keep the best of both worlds:

- From stdlib:
 - Simplicity and abstraction
 - \hookrightarrow that means fresh axiomatic construction
 - Ability to do classical proofs
 - \hookrightarrow fancy axioms in Prop accepted
 - \hookrightarrow excluded middle, choice axiom...
 - \hookrightarrow may port classical tactics (fourier, psatz...)
- From C-CoRN:
 - Constructive axiomatic
 - \hookrightarrow results in Type extractible
 - \hookrightarrow plugging in C-CoRN?
 - $\Box \quad Tabula \ rasa \rightsquigarrow \text{ lot of work}$

Manifesto

We want to keep the best of both worlds:

- From stdlib:
 - Simplicity and abstraction
 - \hookrightarrow that means fresh axiomatic construction
 - Ability to do classical proofs
 - \hookrightarrow fancy axioms in Prop accepted
 - \hookrightarrow excluded middle, choice axiom...
 - \hookrightarrow may port classical tactics (fourier, psatz...)
- From C-CoRN:
 - Constructive axiomatic
 - \hookrightarrow results in Type extractible
 - \hookrightarrow plugging in C-CoRN?
 - $\Box \quad Tabula \ rasa \rightsquigarrow \text{ lot of work}$

Neither obvious nor easy!

Caveats

A fundamental problem: equality!

Leibniz equality on real numbers is a quotient

 $\Box \ x \simeq y := \forall \varepsilon > 0, \delta(x, y) < \varepsilon$

- Whenever we can approximate ${\mathbb R}$ this is not constructive
 - $\hfill\square$... as $\mathtt{eval}_\varepsilon:\mathbb{R}\to\mathbb{Q}$ is not continuous
 - $\hfill\square$ while any field operation must be compatible with \simeq
 - \square eval $_{\varepsilon}$ cannot be
 - \hookrightarrow this would break extraction

Caveats

A fundamental problem: equality!

Leibniz equality on real numbers is a quotient

 $\Box \ x \simeq y := \forall \varepsilon > 0, \delta(x, y) < \varepsilon$

- Whenever we can approximate $\mathbb R$ this is not constructive
 - $\hfill\square$... as $\mathtt{eval}_\varepsilon:\mathbb{R}\to\mathbb{Q}$ is not continuous
 - ${}^{\square}$ while any field operation must be compatible with ${}^{\simeq}$
 - \square eval $_{\varepsilon}$ cannot be
 - \hookrightarrow this would break extraction
- Really need to use setoids

Other problems related to constructivity: partial functions must take a proof, and other non-equivalences

Actual Axiomatic

Structure and operations:

□ axiomatic: \mathbb{R} : Type, $<: \mathbb{R} \to \mathbb{R} \to \text{Prop}$ □ derived:

$$egin{aligned} &x\gtrless y:=\{x< y\}+\{y< x\} & ext{in Type}\ &x\simeq y:=
eg(x< y) \land
eg(y< x) & ext{in Prop} \end{aligned}$$

- \Box axiomatic: +, -, ×, (·)⁻¹ (with a proof that $x \ge 0$)
- Usual well-behavedness axioms
- Important issue: completeness!
 - As in C-CoRN
 - Constructive Cauchy sequences (sig in Type)
 - Any such sequence converges

EM and Markov's principle

Assuming EM in Prop, we get Markov's principle for free.

- Equivalent to $\neg \neg x > 0 \rightarrow x > 0$
 - □ which already implied $\{n : \mathbb{N} \mid x > 2^{-n}\}$
- Simplifies a lot of reasonings
 - we could implement Fourier elimination
- We can still kind of compute using tactic-based Acc trick

EM is not harmful for constructivity: things in Prop were considered irrelevant from the beginning.

Really Classical Maths

- Up to now, we're not a lot different from a slightly classical C-CoRN
- Castéran proposal: a violent axiom that confuse Prop and Type

 $\varepsilon: \forall A \ P, (\text{exists } x, Px) \rightarrow \{x \mid Px\}$

- We do not want to mix non-constructive results with constructive ones
 - … there is stdlib for this!
- We use a structure inherited from programming: monads!
 - \Box A type constructor T : Type \rightarrow Type
 - A lift $A \rightarrow TA$ and a join $T^2A \rightarrow A$
 - \Box in general, no information flow $TA \rightarrow A$
 - $\rightsquigarrow\,$ that's what we wanted

The Inhabited Monad

The inhabited monad : a singleton constructor in Prop

Inductive inhabited A: Prop := inhabits : $A \rightarrow$ inhabited A.

The Inhabited Monad

The inhabited monad : a singleton constructor in Prop

Inductive inhabited A: Prop := inhabits : $A \rightarrow$ inhabited A.

- turn any constructive predicate in a non-constructive one in Prop
- quite delicate to use
 - need explicit specifications (proof-irrelevance!)
- actually this is really useful together with the full axiom of choice

 $\forall A \; (B: A \rightarrow \texttt{Type}), (\forall x, \texttt{inhabited} \; (B \, x)) \rightarrow \texttt{inhabited} \; (\forall x, B \, x)$

The Axiom Monad

A very generic and useful monad.

- The axiom monad : $T_X A = X \rightarrow A$
- used with $X = \varepsilon$ provides the full power of choice axiom
 - □ partial functions, elimination of dependence in proofs and much more!
 - easy to use in a mathematical fashion
 - equivalent to inhabited + AC
- can be refined with any other powerful axiom at will

We can virtually tag any result with its degree of classicality (here we're just interessed in algorithmic realizability).

Conclusion

- Writing a manageable real arithmetic library is difficult
 - on a theoretical point of view: carefully choose your system!
 - on a practical point of view: naming conventions and usability
- Rewriting a whole generic library from scratch is a tedious work
- Actually we don't have any interesting result yet...
 - just a bunch of basic lemmas wich are the most cumbersome to writewe badly lack tactics for now
- Using monads to discriminate proof properties seems something new

Scribitur ad narrandum, not ad probandum

Thank you.