
Constructive axiomatic for the real numbers

Jean-Marie Madiot
Pierre-Marie Pédrot

Junior Laboratory coqtail
Ens Lyon - France

May 23, 2011

Reasoning about real numbers in Coq can be very tedious. The standard library of Coq
is classical and using it means giving up constructive proofs. C-CoRN is constructive in every
way and forbids classical statements. Moreover its hierarchical structure is a bit cumbersome.
We propose a short axiomatic that can handle both constructive and classical mathematical
statements.

The implementation in Coq is available at coqtail’s repository1

1 Constructive axiomatic

The axiomatic is in form of a module, so that it can be implemented, either with the standard
library or with axiom-free Coq terms.

1.1 Ordered ring

The first set of axioms describes the ring operators. R is a parameter of sort Type, 0 and 1 are
two objects of R and +, *, - are operators on R respectively of arities 2, 2, 1.

We also need an equality predicate, but first we define the strict order relation and all the
other order relations will be defined thanks to this one. Indeed a proof of x < y will contain
a computational witness of an ε such that x + ε ≤ y. That way, building an inverse of x
knowing that x 6= 0 will be easier. The sort of the predicate < is not important, as you can use
an argument like “constructive epsilon” of the Coq’Art[BC04]2 book to constructively extract
such an ε. The axioms on < are asymmetry and transitivity. We then define the relation of
discriminability # as the constructive sum of < and >, the inverse relation of <. ≡ is the
negation of # and ≤ is the constructive sum of < and ≡.

1.2 Constructive field

Now we can define an operator for the inverse, which expects a real number and the proof that
this number is discriminable from 0:

·−1[·] : (x : R), (p : x#0) 7→ x−1[p] : R

1https://sourceforge.net/projects/coqtail/develop in src/Fresh/Reals
2This trick is also in the standard library of Coq in Logic/ConstructiveEpsilon

1

https://sourceforge.net/projects/coqtail/develop
http://coq.inria.fr/stdlib/Coq.Logic.ConstructiveEpsilon.html

We then add the axioms of commutativity, associativity, distributivity of multiplication
and/over addition with respect to ≡, and the axioms specifying 0 and 1 as the units for + and
∗. We also specify the inverse operators −, −1 for +, ∗, the latter requiring a proof of x#0.

Moreover we have to say that +, ∗, −1 and even ≡ behave well with respect to < and ≡:

x ≡ x′ , x < y ⇒ x′ < y
x ≡ x′ , y < x ⇒ y < x′

y ≡ y′ ⇒ x + y ≡ x + y′

y < y′ ⇒ x + y < x + y′

0 < x , y < y′ ⇒ x · y < x · y′
0 < x , y ≡ y′ ⇒ x · y ≡ x · y′

0 < x , p′ : 0#x ⇒ 0 < x−1[p′]

We also require that 0 < 1 (it is equivalent to 0#1, assuming the other axioms).

Then we need the fact that R is archimedean. This is not constructively equivalent to having
powerful tools like the integer part function, as it is not continuous thus not constructively
definable. But we can get back from the infinity of R to finitely representable objects as elements
of Z. In fact we can constructively have a function x·y taking the representation of a real number
x and returning some integer z such that3 |x− z| < 1. We cannot constructively make x·y total
and extensional (i.e. x ≡ y → xxy = xyy) because this would make it discontinuous.

Finally we complete R by adding all the limits of the Cauchy sequences of elements of R.

cauchy(u) := ∀ε > 0, ∃N, ∀p, q ≥ N |up − uq| < ε
u→ l := ∀ε > 0, ∃N, ∀n ≥ N, |un − l| < ε

And the axiom we add is:
cauchy(u)⇒ ∃l, u→ l

With these axioms we hope to capture the constructive real numbers. For instance they do
not allow to prove the Markov’s principle4 (semi-constructive [Her10]), the countable principle
of omniscience5 (classical) or the decidability of equality on real numbers (co-semidecidable) all
implied by the axioms of the standard library.

2 Constructive/classical distinction

Dealing with real analysis often requires non constructive axioms like the excluded middle or
the axiom of choice. However we would like to use extraction of constructive proofs and to
know whether the proof of a statement is constructive.

Therefore, if we want to reason constructively we need predicates – like the convergence of
a sequence or the differentiability of a function – defined in Type. To reason classically the
predicates must be in Prop. A solution to this problem is to duplicate the definitions of the
predicates: one for computational content in Type and another for non-constructive statements
in Prop. Another is the use of a monad in order to embed constructive predicates into a world
where the statements are weaker.

3This condition can be replaced by any condition of the form |x− xxy| < 1/2 + ε where ε > 0
4Markov’s principle: if P is decidable then ¬¬(∃n Pn)⇒ ∃n Pn
5Countable principle of omniscience: if P is decidable then the property (∀n Pn) is decidable

2

2.1 Dealing with axioms

Monads allows us to keep track of the external hypothesis used in a proof, through the so-called
axiom monad

Definition 1. The axiom monad on X is TA = X → A with weakening as return and
contraction as bind.

Interesting instantiations for X include excluded-middle, choice, epsilon and virtually any
axiom independent from pCIC.

This monad makes it possible to have a statically checked analysis of the requirements of a
proof. One can also imagine to use a generic axiom monad, under the form TXA where X is
the list of axioms used.

Remark 1. In order to make the use of the axiom monads easier, the functional extensionality
has to be assumed as most of the time we want to prove properties such as lift x = lift y.

Sometimes, additional axioms are not that terrible, and one can argue about the burden
of the axiom monad. For instance, excluded middle or propositional extensionality are not
havoc-wreaking enough to justify embedding them in a monad.

Following Castéran’s work [Cas07], non-constructivism can provide an interesting use of the
axiom monad. We recall the epsilon axiom:

ε ≡ ∀A.∀(P : A→ Prop). (exists x, Px)→ {x | P x}

The epsilon axiom is problematic because once it has been admitted, one cannot differentiate
between proofs that are extractible and those which are not. Indeed, it allows informative
content flow between Prop and Type.

Using the axiom monad on epsilon gives us back the static discrimination between construc-
tive and non-constructive proofs.

2.2 Prop-Type distinction

A weaker way to encode epsilon is to embed every type in Prop. This is done through the
inhabited monad.

Inductive inhabited (A : Type) : Prop := inhabits : A→ inhabited A

If we consider using the choice axiom6, we can recover a equivalent system through the use
of epsilon axiom monad.

One needs to take care of this inhabited construction. Indeed, whenever proof-irrelevance
is assumed, there is at most one proof of inhabited A for any A. This implies in particular
that the programmer must fully specify the content of the lift through sig-like dependent pairs.

For example with the choice axiom, we can specify the partial function inverse on real
numbers as follows:

inhabited {f : R→ R | ∀x x#0→ fx ∗ x ≡ 1}
6The choice axiom, which is purely non-informative:

∀(A : Type) (B : A→ Type), (∀x : A, inhabited(Bx))⇒ inhabited(∀x : A,B x)

3

References

[BC04] Yves Bertot and Pierre Castéran. Interactive theorem proving and program develop-
ment. coq’art: The calculus of inductive constructions, 2004.

[Cas07] Pierre Castéran. Utilisation en coq de l’opérateur de description. Journées Franco-
phones des Langages Applicatifs, 2007.

[Her10] Hugo Herbelin. An intuitionistic logic that proves Markov’s principle. In Proceedings
of the 25th Annual IEEE Symposium on Logic in Computer Science, LICS 2010, 11-14
July 2010, Edinburgh, United Kingdom, pages 50–56. IEEE Computer Society, 2010.

4

	Constructive axiomatic
	Ordered ring
	Constructive field

	Constructive/classical distinction
	Dealing with axioms
	Prop-Type distinction

