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Real analysis in Coq

� Two major libraries of real analysis out there:
� Coq stdlib: highly classical
� C-CoRN: designed to be constructive

� Libraries to prove analysis theorems

� There already have been attempts to mix both

� Some other effective implementations, generally from the folks in
computer arithmetic:
� In general, not libraries of theorems
� More about proved computation on real numbers
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Coq stdlib

� Pros
� Simple and abstract formalism
� Designed with speed of development on mind
� Usual proofs are easy to write
� Shipped with Coq  important base of users

� Cons
� lacks a lot of basic results (on sequences, etc.)
� names quite messy: lemmas Riemann tech24 and alike
� globally badly designed library (Ranalysisi for 0 ≤ i ≤ 4)
� worse than highly classical:

∀A : Prop, {¬¬A}+ {¬A}

{∀n,Pn}+ {∃n,¬(Pn)} if P : nat→ Prop decidable
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C-CoRN

� Pros
� Constructive: compute with your proofs!
� Huge database of intermediate structures
� A lot of nice results

� Cons
� Constructive: make mathematicians flee away!

↪→ “we want real maths!”

� Too complicated to use (from compilation to dependency hell)
� Oldish and overly module-relying Coq
� Not really maintained anymore
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Manifesto

We want to keep the best of both worlds:

� From stdlib:
� Simplicity and abstraction

↪→ that means fresh axiomatic construction

� Ability to do classical proofs

↪→ fancy axioms in Prop accepted
↪→ excluded middle, choice axiom...
↪→ may port classical tactics (fourier, psatz...)

� From C-CoRN:
� Constructive axiomatic

↪→ results in Type extractible
↪→ plugging in C-CoRN?

� Tabula rasa  lot of work

Neither obvious nor easy!
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Caveats

A fundamental problem: equality!

� Leibniz equality on real numbers is a quotient
� x ' y := ∀ε > 0, δ(x , y) < ε

� Whenever we can approximate R this is not constructive
� ... as evalε : R→ Q is not continuous
� while any field operation must be compatible with '
� evalε cannot be

↪→ this would break extraction

� Really need to use setoids

Other problems related to constructivity: partial functions must take
a proof, and other non-equivalences
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Actual Axiomatic

� Structure and operations:
� axiomatic: R : Type, <: R→ R→ Prop
� derived:

x ≷ y := {x < y}+ {y < x} in Type

x ' y := ¬(x < y) ∧ ¬(y < x) in Prop

� axiomatic: +, −, ×, (·)−1 (with a proof that x ≷ 0)

� Usual well-behavedness axioms
� Important issue: completeness!

� As in C-CoRN
� Constructive Cauchy sequences (sig in Type)
� Any such sequence converges
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EM and Markov’s principle

Assuming EM in Prop, we get Markov’s principle for free.

� Equivalent to ¬¬x > 0→ x > 0
� which already implied {n : N | x > 2−n}

� Simplifies a lot of reasonings
� we could implement Fourier elimination

� We can still kind of compute using tactic-based Acc trick

EM is not harmful for constructivity: things in Prop were considered
irrelevant from the beginning.
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Really Classical Maths

� Up to now, we’re not a lot different from a slightly classical
C-CoRN

� Castéran proposal: a violent axiom that confuse Prop and Type

ε : ∀A P, (exists x ,P x)→ {x | P x}

� We do not want to mix non-constructive results with constructive
ones
� ... there is stdlib for this!

� We use a structure inherited from programming: monads!
� A type constructor T : Type→ Type
� A lift A→ TA and a join T 2A→ A
� in general, no information flow TA→ A

 that’s what we wanted
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The Inhabited Monad

The inhabited monad : a singleton constructor in Prop

Inductive inhabited A : Prop := inhabits : A→ inhabitedA.

� turn any constructive predicate in a non-constructive one in Prop

� quite delicate to use
� need explicit specifications (proof-irrelevance!)

� actually this is really useful together with the full axiom of choice

∀A (B : A→ Type), (∀x , inhabited (B x))→ inhabited (∀x ,B x)
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The Axiom Monad

A very generic and useful monad.

� The axiom monad : TXA = X → A
� used with X = ε provides the full power of choice axiom

� partial functions, elimination of dependence in proofs and much more!
� easy to use in a mathematical fashion
� equivalent to inhabited + AC

� can be refined with any other powerful axiom at will

We can virtually tag any result with its degree of classicality (here
we’re just interessed in algorithmic realizability).
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Conclusion

� Writing a manageable real arithmetic library is difficult
� on a theoretical point of view: carefully choose your system!
� on a practical point of view: naming conventions and usability

� Rewriting a whole generic library from scratch is a tedious work
� Actually we don’t have any interesting result yet...

� just a bunch of basic lemmas wich are the most cumbersome to write
� we badly lack tactics for now

� Using monads to discriminate proof properties seems something
new
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Scribitur ad narrandum, not ad probandum

Thank you.
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