
Using reflection to solve some differential equations

Guillaume Allais
Junior Laboratory coqtail

ENS Lyon - France

June 28, 2011

Abstract

On top of coqtail’s libraries that provide a formalization of power series, we added a small de-
velopment that aims at simplifying proofs that given power series are solutions of specific differential
equations. The use of reflection allows to prove general facts about differential equations which can then
be used to simplify the proofs thanks to an Ltac machinery that performs the tedious conversions.

Files: All the implementation mentioned in this paper are available for download via coqtail’s svn
repository1.

1 Definitions

Even if the Dequa library relies heavily on coqtail’s Rpser definitions and developments, one does not need
to know much about these in order to read this presentation. We recall here the basic definitions that are
used afterwards.

The sequence of coefficients of the power series defining the constant function λ .C is given by the An cst

function. The infiniteness of its radius of convergence is obviously part of the library.

An cst (C) := n 7→
{
C if n = 0
0 otherwise

The coefficients of the formal kth derivative of a power series defined by An is given by the An nth deriv

function. The link between the formal derivative and the actual one is also stated and proved in the available
libraries.

An nth deriv (An, k) := n 7→ (n+ k)!

n!
An+k

Given a sequence of coefficients An and a proof ρ that the convergence radius of
∑

nAnx
n is infinite, the

sum of the power series is given by the function sum :

sum (An, ρ) := x 7→
+∞∑
k=0

Akx
k

2 Reflection of differential equations

In order to represent the differential equations, we need two components: a datatype which can describe the
structure of a differential equation and a semantics which, given a structure and a context, yields a formula
in Prop stating that the functions in the context are solutions of the described differential equation.

1see http://sourceforge.net/projects/coqtail/develop and in particular src/Reals/Dequa *.v.

1

2.1 Reification

A differential equation ∀x.e1(x) = e2(x) is represented as a pair (E1, E2) of side equations (usually written
E1 :=: E2) where E1 (resp. E2) represents e1 (resp. e2). A side equation is either a constant, a function’s
nth derivative or a linear combination of side equations. We use the following datatype to describe such side
equations:

Inductive side_equa : Set :=

| cst : forall (r : R), side_equa

| scal : forall (r : R) (s : side_equa), side_equa

| y : forall (p : nat) (k : nat), side_equa

| opp : forall (s1 : side_equa), side_equa

| plus : forall (s1 s2 : side_equa), side_equa.

This representation can be rather easily extended with new data constructors when the corresponding
theory has been formalized in Coq [1]: adding the multiplication by a scalar (which was not present in our
first toy example) was a matter of less than twenty minutes as soon as all the appropriate lemmas were
available in Rpser2.

2.2 Interpretation

Unlike other procedures using reflection, Dequa provides various semantics for these side equations: the
straightforward one (à la Tarski) but also a semantics that yields equations on sequences of coefficients over
R.

These semantics (K is either R or N) are defined in two steps: given an environment, interpK translates
side equations and [| |]K uses it to interpret equations. For the sake of simplicity, instead of enforcing the
well-formedness of the environment by a dependent type (e.g. a dependent vector), the defined functions are
partial and use the option monad.

Rseq infty is the subset of sequences over R such that the corresponding power series has an infinite
convergence radius (a dependent pair in Coq).

2.2.1 Equations on power series

Our first concern is to define the semantics à la Tarski that translates diff equa as differential equations on
sums of power series. interpR : side equa → list Rseq infty → option (R → R) translates constants as
the constant function, variables as derivatives of sums of power series of the corresponding Rseq available in
the environment and linear combinations as linear combinations of functions3.

[| |]R : diff equa → list Rseq infty → Prop is the corresponding interpretation function: given the
interpretation of two side equations, it states that the obtained functions are extensionally equal.

2.2.2 Equations on sequences over R

The second semantics translates diff equa as equations on sequences over R. The function interpN :
side equa → list Rseq → option Rseq translates constants as An cst , variables as An nth deriv and
linear combinations as linear combinations of sequences4.

[| |]N : diff equa→ list Rseq→ Prop is the corresponding interpretation function: given the interpre-
tation of two side equations, it states that the obtained sequences are extensionally equal.

2We hope to modify the data structure to be able to talk about the product of two functions in a near future.
3See 3 for technical details.
4See 3 for technical details.

2

2.3 Relation between these semantics

The relation between these semantics comes from two simple facts: given two sequences of coefficients
extensionally equal, the corresponding power series are equal and sums of power series are compatible with
sum (the sum of the power series is the power series of the sum), opposite, etc. Therefore it is sufficient to
prove that some coefficients are solutions of the equation on sequences in order to prove that the sums of
the corresponding power series are solutions of the differential equations.

We define proj1 the projection which, given a sequence An of type Rseq infty, forgets the proof that∑
nAnx

n has an infinite convergence radius: proj1An is of type Rseq (in Coq we simply use projT1).

Theorem 1 Our main result states that given a context ρ of type list Rseq infty:

[|e1 :=: e2|]N (map proj1 ρ)⇒ [|e1 :=: e2|]R ρ

ie. we can prove that some functions (sums of power series) are solutions of a given differential equation
by proving results on their coefficients.

Proof The proof uses the following intermediate lemma:

interpN(e,map proj1 ρ) = SomeUn ∧ interpR(e, ρ) = Some f

⇒ ∃ρ.∀x.f(x) = sum (Un, ρ)(x)

which is proved by induction on e.

2.4 Going back to actual problems

We just proved a theorem that gives us the opportunity to show that some functions are solutions of
differential equations just by looking at the coefficients of their power series. This theorem is however quite
useless without tactics on top of it: one has to feed it with a diff equa and an environment and it will
output a statement that has a very specific shape (given by the function [| |]R) which is highly unlikely to
match the current goal.

Because quoting differential equations and normalizing goals is tedious enough for us to want to avoid
doing it by hand, we wrote a couple of tactics that do all the hard work for us. We have two main kinds of
tactics corresponding to the two main steps: quoting and normalizing.

2.4.1 Quoting differential equations

There are different ways of quoting the same differential equation depending on whether you care about the
proofs (that the radius of convergence is infinite, that you can take the derivative of the power series, etc.)
used or not and whether a constant has to be a value or not.

We chose not to care about the proofs because none of the values computed by the operations we consider
are influenced by the proof used. Therefore ∀x. sum(an, pr1)(x) = sum(an, pr2)(x) will be represented as
y(0, 0) = y(0, 0).

We also chose to allow constants to be complex expressions and not only values in order to guarantee that
the generated diff equa will be as simple as possible. We will therefore quote ∀x. sum(an, pr1)(x) = 5∗(4+3)
as y(0, 0) = cst(5 ∗ (4 + 3)) rather than y(0, 0) = scal(5, (plus((cst(4)), (cst(3)))).

Given this choices, the tactic machinery should look like:

• isconst(s, x) that checks whether the expression s is a constant with respect to x.

• add variables(an, pr, env) that adds (an, pr) to the environment env if there is no (an, pr
′) already

declared5 and returns an updated environment together with an integer representing (an, pr).

5where pr, pr′ are proofs that an has an infinite convergence radius.

3

• quote side equa(env, s, x) that proceeds as follow:

if isconst(s, x) then return cst(s) and env

else if the head constructor of s is in {− ; + ; − } then translate it to the appropriate side equa

constructor (either opp, plus or minus) and recursively quote the subexpressions while propagating
the environment

else if the head constructor of s is ∗ then one of the subexpressions has to be a constant6;
recursively quote the non-constant equation and output a scal together with the updated environment

else if the expression is a sum or a derivative, add the corresponding sequence to the environment
via add variables that returns a p ∈ N and an updated environment and propagate the environment
while outputting y(p, k) where k is such that the quoted expression is a kth derivative.

2.4.2 Normalizing goals

The aim of the goal’s normalization procedure is to modify the goal so that it matches [|E|]R ρ where E and
ρ are respectively the representation of the goal and the corresponding environment. If we look closely at
[| |]R’s code, we can remark that:

• scal(k, s) is always translated as k ∗ s′ where s′ is the translation of s. We must therefore use the
commutativity of the addition to put all the constant expression on the left side of their non-constant
counterpart

• y(p, k) is always translated as nth derive(sum(ρp), k) and we must therefore:

replace every occurrence of sum(fst(ρp), pr′) where pr′ 6= snd(ρp) by sum(ρp)

replace every occurrence of sum(ρp)(x) with nth derive(sum(ρp), 0)

replace every occurrence of derive(sum(ρp))(x) with nth derive(sum(ρp), 1)

This normalization is possible thanks to lemmas stating that all these substitutions are sound. Here are
two examples of such lemmas:

Lemma nth_derive_sum_PI_O : forall an (r1 r2 : infinite_cv_radius an),

nth_derive (sum an r1) (D_infty_Rpser an r1 O) == sum an r2.

Lemma nth_derive_sum_PI_1 : forall an (r1 r2 : infinite_cv_radius an)

(pr : derivable (sum an r2)),

nth_derive (sum an r1) (D_infty_Rpser an r1 1) == derive (sum an r2) pr.

2.4.3 End-user tactics

The end-user of our libraries is obviously not supposed to call these tactics that deal with environment,
sub-expressions, variable names, etc. We provide two friendlier tactics (namely solve diff equa on and
solve diff equa) that hide away all these details:

• solve diff equa on(x) inspects the goal. If the goal is an equality statement,

It quotes both sides by using quote side equa with an appropriate environment (the empty one
first and the one returned by the first call then) and x; as a result, it gets two side equa E1 and E2

and an environment env

It then normalizes the equation by calling normalize on both sides with env

The last step is to assume [|E1: =: E2|]N ρ (the user will be asked to prove this fact later) via cut

and use it together with our theorem to prov the current goal

• solve diff equa on is simply solve diff equa on(x) where x is a fresh variable introduced by the
tactic.

6We do not support non linear differential equations yet.

4

3 Applications

Thanks to this theorem and these tactics, one can prove in less than 20 lines7 that the exponential is a
solution of the equation y(n+1) = y(n). Instead of having to deal with limits and derivatives, one just has to
prove that:

∀k ∈ N,
((n+ 1) + k)!

k!
∗ 1

((n+ 1) + k)!
=

(n+ k)!

k!
∗ 1

(n+ k)!

Without much more work, one can also prove that cosine and sine are both solutions of y(2) = −y.

References

[1] INRIA. The Coq proof assistant.

7See Dequa examples for more details on these proofs.

5

Appendix

We assume in the following developments that the lookup function nth error : ∀α. listα→ N→ optionα
defined in the standard library is known by the reader.

Equations on power series

interpR : side equa→ list Rseq infty

→ option (R→ R)
interpR (cst C , ρ) = return (λ .C)
interpR (scal C E , ρ) = interpR(E, ρ) >>= (λf. return(C ∗ f))
interpR (y i k , ρ) = nth error(ρ, i) >>= (λun. return(sum (un)(k)))
interpR (opp E , ρ) = interpR(E, ρ) >>= (λf. return(−f))
interpR (plus E1 E2 , ρ) = interpR(E1, ρ) >>= (λf1.

interpR(E2, ρ) >>= (λf2. return(f1 + f2)))

[| |]R : diff equa→ list Rseq infty→ Prop

[|E1: =: E2|]R ρ = ⊥

if

{
interpR(E1, ρ) = None

or interpR(E2, ρ) = None

[|E1: =: E2|]R ρ = ∀x ∈ R.e1(x) = e2(x)

if

{
interpR(E1, ρ) = Some e1

and interpR(E2, ρ) = Some e2

Equations on sequences over R
interpN : side equa→ list Rseq→ option Rseq

interpN (cst C , ρ) = return (An cst (C))
interpN (scal C E , ρ) = interpN(E, ρ) >>= (λun. return(C ∗ un))
interpN (y i k , ρ) = nth error(ρ, i) >>= (λun.

return(An nth deriv (un, k))
interpN (opp E , ρ) = interpN(E, ρ) >>= (λun. return(−un))
interpN (plus E1 E2 , ρ) = interpN(E1, ρ) >>= (λun.

interpN(E2, ρ) >>= (λvn. return(un + vn)))

[| |]N : diff equa→ list Rseq infty→ Prop

[|E1: =: E2|]N ρ = ⊥

if

{
interpN(E1, ρ) = None

or interpN(E2, ρ) = None

[|E1: =: E2|]N ρ = ∀n ∈ N.un(n) = vn(n)

if

{
interpN(E1, ρ) = Someun

and interpN(E2, ρ) = Some vn

6

