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In the interactive theorem prover Coq[?], trigonometric functions are defined in the standard library.
However they are not directly described as power series due to a lack of formalization of this concept.
We present a strategy to describe the power series over R and then advocate for the broad use of
abstract concepts in the standard library by showing the immediate benefits it brings.

Thanks to the power series framework we are able to redefine the usual functions (e.g. sin, cos,
exp) in less than 80 lines, to get some of their properties for free (e.g. being in the C∞ class) and to
prove that they are solutions of particular differential equations just by studying sequences over R.

Files: All the implementation mentioned in this paper are available for download via COQTAIL’s
svn repository1.

1 Formalization

Power series are a rather intensional mathematical notion; therefore, its formalization in an interactive
theorem prover is really close to textbooks’ presentation. Except for one point: the definition of the
convergence radius.

In an intuitionistic setting, our definition of the radius of convergence is much more informative than
the standard one. This is however not harmful given that it has been proved classically equivalent to the
standard one. This design choice allows us to get rid of the excluded-middle (henceforth EM) axiom in
most proofs that traditionally use it. One could expect as a drawback that the lemmas with the existence
of a radius of convergence as a conclusion not to be provable anymore. It is fortunately not the case2.

1.1 The convergence radius

The convergence radius ρ of a power series whose coefficients are (an)n∈N is usually defined as a lowest
upper bound (in R∪{+∞}):

ρ

(
∑
n∈N

anxn

)
= sup{r ∈ R | the sequence |anrn| is bounded}

As being bounded is not decidable, knowing that r is the convergence radius of ∑n∈N anxn is not
sufficient to show without using EM that the sequence (|anxn|)n∈N is bounded for all x in Br(0). That is
why we use a more verbose definition which describes exactly the same idea of being the lowest upper
bound and is easier to use.

1see http://sourceforge.net/projects/coqtail/develop and in particular src/Reals/Rpser.v.
2At least for d’Alembert’s ratio criterion which is one of the key lemmas that have this shape.

http://sourceforge.net/projects/coqtail/develop
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Definition 1 (Rpser def) We say that r is a weak convergence radius if it is a lower bound for the
convergence radius (ie. r belongs to the disk of convergence).

Cv radius weak(an,r) = |anrn| is bounded

From this definition, we can obtain the definition of the finite convergence radius3.

Definition 2 (Rpser def) The convergence radius is finite and equal to r if r is both bigger than all the
weak convergence radiuses and smaller or equal to all the reals that are too big to be weak convergence
radiuses.

finite cv radius(an,r) =
∀r′, 0≤ r′ < r ⇒ Cv radius weak(an,r′)

∧ ∀r′, r < r′ ⇒¬Cv radius weak(an,r′)

The classical equivalence between this definition and the usual one is proved through the two fol-
lowing lemmas. Unsurprisingly, the first implication does not need the excluded middle axiom: our
definition is stronger in an EM-free setting than the usual one.

Lemma 1 (Rpser base facts) finite cv radius(an,r)⇒ r = sup{x|Cv radius weak(an,x)}

Lemma 2 (Rpser base facts) EM∧r = sup{x|Cv radius weak(an,x)}⇒ finite cv radius(an,r)

The first important tool that we can get is d’Alembert’s ratio criterion. It can be used to prove that a
particular power series has a given convergence radius; this result is for example used to prove that exp
has an infinite convergence radius from which we can easily deduce that so do cos and sin.

Lemma 3 (Rpser cv facts) D’Alembert’s ratio criterion states that, given a sequence (an)n∈N which
ultimately contains only nonzero elements:

lim
n→+∞

∣∣∣∣an+1

an

∣∣∣∣= λ 6= 0⇒ finite cv radius(an,
1
λ
)

1.2 Sum of a power series

When we know what is the power series’ convergence radius, we can start summing it on the appropriate
domain. Our cherished tool to define the sum of a power series is obviously Abel’s lemma which states
that given a convergence radius, we can sum the power series inside the corresponding ball.

Lemma 4 (Rpser radius facts)

Cv radius weak(an,r)⇒∀x ∈ Br(0),∃l,
+∞

∑
n=0

anxn = l

Definition 3 (Rpser sums) From this lemma we can construct the functions (namely weaksum r , sum r

and sum ) that given either Cv radius weak(an,r), finite cv radius(an,r) or infinite cv radius(an)
output the piecewise-defined function:

x 7→
{

∑
+∞

n=0 anxn if x is inside the convergence disk
0 otherwise

3The extension to the infinite case is straightforward: the convergence radius is infinite if and only if all the reals are weak
convergence radiuses.
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1.3 Derivative of a power series

The formalization of the derivative of a power series is done in two steps. First of all, we define the
formal derivative of a power series and prove that this definition makes sense (e.g. that the sum exists):

Definition 4 (Rpser derivative) The formal derivative of the power series defined by (an) is the one
defined by:

An deriv(an) = (n+1)∗an+1

Lemma 5 (Rpser radius facts) And its convergence radius is exactly the same as the one of the original
series:

finite cv radius(an,r)⇔ finite cv radius(An deriv(an),r)

Now we know that the formal derivative is summable but we still have to somehow explicit the
relation that exists between these two power series. This is maybe the most complex part of the library;
it uses a theorem on sequences of functions (see infra) plus the fact that the sequence of the partial sums
of a power series converges normally (thus uniformly) inside the disk of convergence.

Theorem 1 (RFsequence facts) On the ball Br(c) if ( fn)n∈N is a sequence of derivable functions and if
the following limits exist:

fn
n→+∞−−−−→ f and f ′n

n→+∞−−−−→
CVU

g

then f is derivable and its derivative is g.

As a consequence, we can conclude that the power series are derivable and that their derivative is
precisely the sum of the formal derivative. As the derivative of a power series is another power series, it
is trivial to show that the function defined as the sum belongs to the C∞ class4. A simple induction can
even give us the explicit description of the nth derivative of a sum:

Definition 5 (Rpser def) The formal kth derivative of the power series defined by (an) is the one defined
by:

An nth deriv(an,k) =
(n+ k)!

n!
an+k

Lemma 6 (Rpser derivative facts) Explicit description of the kth derivative of the power series defined
by (an)n∈N: (

+∞

∑
n=0

anxn

)(k)

=
+∞

∑
n=0

An nth deriv(an,k)xn

2 Applications

2.1 Defining usual functions

Thanks to all the formalization work, we can now define all the usual functions in a few lines. We begin
by defining the exponential using d’Alembert’s ratio test to prove that its convergence radius is infinite
(which is rather easy).

Then we can show easily that cosine and sine also have an infinite convergence radius by using one
of the basic lemmas:

4See the C n * files for results on classes of functions.
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Lemma 7 (Rpser base facts) Cv radius weak is compatible with the pointwise order on the sequences
over reals:

(|bn| ≤pointwise |an|)⇒∀r,Cv radius weak(an,r)⇒ Cv radius weak(bn,r)

We have been able to define exp, sin and cos in less than 80 lines of Coq source code. It has to be
compared to the hundreds of lines and the ad-hoc arguments (e.g. convergence of alternating series) that
Coq’s standard library dedicates to the definition of these exact same functions.

Not only defining these functions is way easier, but we get for free their derivability (and even their
being in the C∞ class), the exact shape of their nth derivative and therefore we can easily prove the
relations that exist between them.

2.2 Finding solutions of linear differential equations

On top of the power series formalization, we constructed a small library that describes linear differential
equations of arbitrary shape by reflection. It is based on two components:
• A datatype side equa that is a descriptor of linear differential equations. A differential equation

is a pair (E1,E2) of side equations (usually written E1 :=: E2).

• A (set of) semantics that given an inhabitant of this datatype and an environment, outputs a propo-
sition.

Definition 6 (Dequa def) The grammar of the side equa datatype is (where c is a real constant):

E ::= c | y(k)i | −E | E +E

Definition 7 (Dequa def) The semantics that translates differential equations into propositions on se-
quences over R is defined in two steps. First of all we define recursively the interpretation of the side of
an equation:

interp N : side equa→ Rseq list→ Rseq

interp N( c ,ρ) = An cst(c)
interp N( y(k)i ,ρ) = An nth deriv(ρ(i),k)
interp N( −E ,ρ) = −interp N(E,ρ)
interp N( E1 +E2 ,ρ) = interp N(E1,ρ)+interp N(E2,ρ)

and then we can construct the interpretation function:

[|E1 :=: E2|]N ρ = ∀n,interp N(E1,ρ)(n) = interp N(E2,ρ)(n)

We can define similarly the semantics [| |]R that translates differential equations into propositions on
power series. Having this generic representation of differential equations and this different semantics
allows us to state general theorems about linear differential equations.
Lemma 8 (Dequa facts) Our main result states that given a context ρ of sequences of coefficients, we
have (provided that the involved power series have an infinite radius of convergence):

[|E1 :=: E2|]N ρ ⇒ [|E1 :=: E2|]R ρ

ie. we can prove that some functions (sums of power series) are solutions of a given differential
equation by proving results on their coefficients.

By using this theorem, one can prove in less than 20 lines that the exponential is a solution of the
equation y(n+1) = y(n). Without much more work, one can also prove that cosine and sine are solutions
of y(2) =−y.
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3 Extensions

3.1 Power series on other carriers

COQTAIL already has a basic library on the power series over the complex numbers5 (definitions, dif-
ferentiability, derivability). A future work could be to adapt the work done on the real numbers to the
complex numbers. A better idea might be to formalize the power series on a more general structure (e.g.
a ring equipped with a norm).

3.2 Improving the library on differential equations

Even if the work on the differential equations is already quite convenient, it is still rather limited: one
can only derive variables and not composed expressions, there is currently no built-in minus function or
multiplication by a constant and it is impossible to talk about the product of power series.

In the future, a description of the explicit shape of the product of two power series (the power series
which is defined with the Cauchy product of the coefficients’ sequences) could be a valuable addition.
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5See src/Complex/Cpser *.v


	Formalization
	The convergence radius
	Sum of a power series
	Derivative of a power series

	Applications
	Defining usual functions
	Finding solutions of linear differential equations

	Extensions
	Power series on other carriers
	Improving the library on differential equations

	Acknowledgements

