Library Coqtail.Reals.Ediff.Vectorial_Cauchy
Require Import Evect.
Variable V : Type.
Variable N : V → R.
Variable (vO:V).
Variable vadd : V→V→V.
Variable smul : R→V→V.
Variable dim : nat.
Variable base : nat → V.
Variable p : nat → V → R.
Hypothesis vect_space : R_vector_space N vO vadd smul dim base p.
Lemma Cauchy_autonomous : ∀ (f : V → V) (I : R → Prop) (K : V → Prop) (open : Open_space vect_space K)
(t0 : R) (x0 : V),
K x0 → VVcontinuity f open → lipschitz f open →
{x : R → V & {C : VC vect_space 1 I x | ∀ (t : R), I t → (K (x t)) ∧ (Vderive (VC_derivable C)) t = f (x t) ∧ x t0 = x0}}.
Proof.
intros f I K openK t0 x0 Hx0K Hfcont lipschitzf.
admit.
Qed.
Variable V : Type.
Variable N : V → R.
Variable (vO:V).
Variable vadd : V→V→V.
Variable smul : R→V→V.
Variable dim : nat.
Variable base : nat → V.
Variable p : nat → V → R.
Hypothesis vect_space : R_vector_space N vO vadd smul dim base p.
Lemma Cauchy_autonomous : ∀ (f : V → V) (I : R → Prop) (K : V → Prop) (open : Open_space vect_space K)
(t0 : R) (x0 : V),
K x0 → VVcontinuity f open → lipschitz f open →
{x : R → V & {C : VC vect_space 1 I x | ∀ (t : R), I t → (K (x t)) ∧ (Vderive (VC_derivable C)) t = f (x t) ∧ x t0 = x0}}.
Proof.
intros f I K openK t0 x0 Hx0K Hfcont lipschitzf.
admit.
Qed.