Library Coqtail.Reals.Ediff.Vectorial_Cauchy

Require Import Evect.

Variable V : Type.
Variable N : VR.
Variable (vO:V).
Variable vadd : VVV.
Variable smul : RVV.
Variable dim : nat.
Variable base : natV.
Variable p : natVR.

Hypothesis vect_space : R_vector_space N vO vadd smul dim base p.

Lemma Cauchy_autonomous : (f : VV) (I : RProp) (K : VProp) (open : Open_space vect_space K)
  (t0 : R) (x0 : V),
  K x0VVcontinuity f openlipschitz f open
  {x : RV & {C : VC vect_space 1 I x | (t : R), I t(K (x t)) (Vderive (VC_derivable C)) t = f (x t) x t0 = x0}}.
Proof.
intros f I K openK t0 x0 Hx0K Hfcont lipschitzf.
admit.
Qed.