# Library Coqtail.Reals.Ediff.integrales

Require Import Reals.

Set Implicit Arguments.

Open Scope R_scope.

Module Type Integrals.

Axiom Riemann_integrable : (f : RR) (a b:R), Type.
Axiom RiemannInt_P1 : (f: RR) (a b : R), Riemann_integrable f a bRiemann_integrable f b a.
Axiom RiemannInt : (f : RR) (a b: R) (pr: Riemann_integrable f a b), R.
Axiom RiemannInt_ext : (f : RR) (a b:R) (pr1 pr2: Riemann_integrable f a b), RiemannInt pr1 = RiemannInt pr2.
Axiom Riemann_integrable_singleton : (f:RR) (a:R), Riemann_integrable f a a.
Axiom continuity_implies_RiemannInt :
(f:RR) (a b:R),
( x:R, (a x b b x a)-> continuity_pt f x) → Riemann_integrable f a b.
Axiom RiemannInt_opp : (f:RR) (a b:R) (pr1:Riemann_integrable f a b)
(pr2:Riemann_integrable f b a), RiemannInt pr1 = - RiemannInt pr2.
Axiom RiemannInt_singleton : (f:RR) (a:R) (pr:Riemann_integrable f a a), RiemannInt pr = 0.
Axiom Riemann_integrable_linear : (f g:RR) (a b l:R),
Riemann_integrable f a b
Riemann_integrable g a b
Riemann_integrable (fun x:Rf x + l × g x) a b.
Axiom RiemannInt_linear : (f g:RR) (a b l:R) (pr1:Riemann_integrable f a b)
(pr2:Riemann_integrable g a b)
(pr3:Riemann_integrable (fun x:Rf x + l × g x) a b),
RiemannInt pr3 = RiemannInt pr1 + l × RiemannInt pr2.
Axiom Riemann_integrable_const : a b c:R, Riemann_integrable (fct_cte c) a b.
Axiom RiemannInt_const : (a b c:R) (pr:Riemann_integrable (fct_cte c) a b),
RiemannInt pr = c × (b - a).

Axiom Riemann_integrable_Rabs : (f:RR) (a b:R),
Riemann_integrable f a bRiemann_integrable (fun x:RRabs (f x)) a b.
Axiom Riemann_integrable_chasles : (f: RR) (a b c: R),
Riemann_integrable f a b
Riemann_integrable f b cRiemann_integrable f a c.
Axiom RiemannInt_monotony: (f:RR) (a b c:R),
Riemann_integrable f a ba c bRiemann_integrable f a c.
Axiom RiemannInt_monotony2 : (f:RR) (a b c:R),
Riemann_integrable f a ba c bRiemann_integrable f c b.
Axiom RiemannInt_chasles: (f:RR) (a b c:R) (pr1:Riemann_integrable f a b)
(pr2:Riemann_integrable f b c) (pr3:Riemann_integrable f a c),
RiemannInt pr1 + RiemannInt pr2 = RiemannInt pr3.
Axiom derive_Riemann_integrable: (f:RR) (H: derivable f) (cont1 : continuity (derive f H)) (a b:R), Riemann_integrable (derive f (H)) a b.
Axiom FTC_Riemann : (f:RR) (H: derivable f) (cont1 : continuity (derive f H)) (a b:R) (pr:Riemann_integrable (derive f H) a b),
RiemannInt pr = f b - f a.

End Integrals.