Library Coqtail.Reals.Ediff.integrales
Require Import Reals.
Set Implicit Arguments.
Open Scope R_scope.
Module Type Integrals.
Axiom Riemann_integrable : ∀ (f : R → R) (a b:R), Type.
Axiom RiemannInt_P1 : ∀ (f: R → R) (a b : R), Riemann_integrable f a b → Riemann_integrable f b a.
Axiom RiemannInt : ∀ (f : R → R) (a b: R) (pr: Riemann_integrable f a b), R.
Axiom RiemannInt_ext : ∀ (f : R → R) (a b:R) (pr1 pr2: Riemann_integrable f a b), RiemannInt pr1 = RiemannInt pr2.
Axiom Riemann_integrable_singleton : ∀ (f:R → R) (a:R), Riemann_integrable f a a.
Axiom continuity_implies_RiemannInt :
∀ (f:R → R) (a b:R),
(∀ x:R, (a ≤ x ≤ b ∨ b ≤ x ≤ a)-> continuity_pt f x) → Riemann_integrable f a b.
Axiom RiemannInt_opp : ∀ (f:R → R) (a b:R) (pr1:Riemann_integrable f a b)
(pr2:Riemann_integrable f b a), RiemannInt pr1 = - RiemannInt pr2.
Axiom RiemannInt_singleton : ∀ (f:R → R) (a:R) (pr:Riemann_integrable f a a), RiemannInt pr = 0.
Axiom Riemann_integrable_linear : ∀ (f g:R → R) (a b l:R),
Riemann_integrable f a b →
Riemann_integrable g a b →
Riemann_integrable (fun x:R ⇒ f x + l × g x) a b.
Axiom RiemannInt_linear : ∀ (f g:R → R) (a b l:R) (pr1:Riemann_integrable f a b)
(pr2:Riemann_integrable g a b)
(pr3:Riemann_integrable (fun x:R ⇒ f x + l × g x) a b),
RiemannInt pr3 = RiemannInt pr1 + l × RiemannInt pr2.
Axiom Riemann_integrable_const : ∀ a b c:R, Riemann_integrable (fct_cte c) a b.
Axiom RiemannInt_const : ∀ (a b c:R) (pr:Riemann_integrable (fct_cte c) a b),
RiemannInt pr = c × (b - a).
Axiom Riemann_integrable_Rabs : ∀ (f:R → R) (a b:R),
Riemann_integrable f a b → Riemann_integrable (fun x:R ⇒ Rabs (f x)) a b.
Axiom Riemann_integrable_chasles : ∀ (f: R→R) (a b c: R),
Riemann_integrable f a b →
Riemann_integrable f b c → Riemann_integrable f a c.
Axiom RiemannInt_monotony: ∀ (f:R → R) (a b c:R),
Riemann_integrable f a b → a ≤ c ≤ b → Riemann_integrable f a c.
Axiom RiemannInt_monotony2 : ∀ (f:R → R) (a b c:R),
Riemann_integrable f a b → a ≤ c ≤ b → Riemann_integrable f c b.
Axiom RiemannInt_chasles: ∀ (f:R → R) (a b c:R) (pr1:Riemann_integrable f a b)
(pr2:Riemann_integrable f b c) (pr3:Riemann_integrable f a c),
RiemannInt pr1 + RiemannInt pr2 = RiemannInt pr3.
Axiom derive_Riemann_integrable: ∀ (f:R → R) (H: derivable f) (cont1 : continuity (derive f H)) (a b:R), Riemann_integrable (derive f (H)) a b.
Axiom FTC_Riemann : ∀ (f:R → R) (H: derivable f) (cont1 : continuity (derive f H)) (a b:R) (pr:Riemann_integrable (derive f H) a b),
RiemannInt pr = f b - f a.
End Integrals.
Set Implicit Arguments.
Open Scope R_scope.
Module Type Integrals.
Axiom Riemann_integrable : ∀ (f : R → R) (a b:R), Type.
Axiom RiemannInt_P1 : ∀ (f: R → R) (a b : R), Riemann_integrable f a b → Riemann_integrable f b a.
Axiom RiemannInt : ∀ (f : R → R) (a b: R) (pr: Riemann_integrable f a b), R.
Axiom RiemannInt_ext : ∀ (f : R → R) (a b:R) (pr1 pr2: Riemann_integrable f a b), RiemannInt pr1 = RiemannInt pr2.
Axiom Riemann_integrable_singleton : ∀ (f:R → R) (a:R), Riemann_integrable f a a.
Axiom continuity_implies_RiemannInt :
∀ (f:R → R) (a b:R),
(∀ x:R, (a ≤ x ≤ b ∨ b ≤ x ≤ a)-> continuity_pt f x) → Riemann_integrable f a b.
Axiom RiemannInt_opp : ∀ (f:R → R) (a b:R) (pr1:Riemann_integrable f a b)
(pr2:Riemann_integrable f b a), RiemannInt pr1 = - RiemannInt pr2.
Axiom RiemannInt_singleton : ∀ (f:R → R) (a:R) (pr:Riemann_integrable f a a), RiemannInt pr = 0.
Axiom Riemann_integrable_linear : ∀ (f g:R → R) (a b l:R),
Riemann_integrable f a b →
Riemann_integrable g a b →
Riemann_integrable (fun x:R ⇒ f x + l × g x) a b.
Axiom RiemannInt_linear : ∀ (f g:R → R) (a b l:R) (pr1:Riemann_integrable f a b)
(pr2:Riemann_integrable g a b)
(pr3:Riemann_integrable (fun x:R ⇒ f x + l × g x) a b),
RiemannInt pr3 = RiemannInt pr1 + l × RiemannInt pr2.
Axiom Riemann_integrable_const : ∀ a b c:R, Riemann_integrable (fct_cte c) a b.
Axiom RiemannInt_const : ∀ (a b c:R) (pr:Riemann_integrable (fct_cte c) a b),
RiemannInt pr = c × (b - a).
Axiom Riemann_integrable_Rabs : ∀ (f:R → R) (a b:R),
Riemann_integrable f a b → Riemann_integrable (fun x:R ⇒ Rabs (f x)) a b.
Axiom Riemann_integrable_chasles : ∀ (f: R→R) (a b c: R),
Riemann_integrable f a b →
Riemann_integrable f b c → Riemann_integrable f a c.
Axiom RiemannInt_monotony: ∀ (f:R → R) (a b c:R),
Riemann_integrable f a b → a ≤ c ≤ b → Riemann_integrable f a c.
Axiom RiemannInt_monotony2 : ∀ (f:R → R) (a b c:R),
Riemann_integrable f a b → a ≤ c ≤ b → Riemann_integrable f c b.
Axiom RiemannInt_chasles: ∀ (f:R → R) (a b c:R) (pr1:Riemann_integrable f a b)
(pr2:Riemann_integrable f b c) (pr3:Riemann_integrable f a c),
RiemannInt pr1 + RiemannInt pr2 = RiemannInt pr3.
Axiom derive_Riemann_integrable: ∀ (f:R → R) (H: derivable f) (cont1 : continuity (derive f H)) (a b:R), Riemann_integrable (derive f (H)) a b.
Axiom FTC_Riemann : ∀ (f:R → R) (H: derivable f) (cont1 : continuity (derive f H)) (a b:R) (pr:Riemann_integrable (derive f H) a b),
RiemannInt pr = f b - f a.
End Integrals.