Library Coqtail.Reals.Logic.Runcountable


Require Import Reals.
Require Import Fourier.

Open Scope R_scope.

R is uncountable.


Theorem R_uncountable_strong :
   (f : natR) (x y : R), x < y{l : R | n, l f n & x l y}.
Proof.
intros f x y H.
pose (lf := l x y H f).
lf.
  intros n Hc; destruct (l_not_in_Rn x y H f n); unfold Rn; auto.
  apply l_in_segment.
Qed.

Theorem R_uncountable : (f : natR), {l : R | n, l f n}.
Proof.
apply (segment_uncountable 0 1); fourier.
Qed.