Library Coqtail.Reals.Ranalysis.Rfunction_classes_def

Require Import Rbase.
Require Import Ranalysis.

Require Import Rinterval Ranalysis_def.

Local Open Scope R_scope.

Being of Class D_n.


Inductive DClass (f : RR) : natType :=
  | D_0 : DClass f 0
  | D_S : n (pr : derivable f), DClass (derive f pr) nDClass f (S n).

Definition D n f := DClass f n.

Restriction to a specific Rball.

Inductive DClass_Rball (c r : R) (f : RR) : natType :=
  | Db_0 : DClass_Rball c r f 0
  | Db_S : n (pr : derivable_Rball c r f),
           DClass_Rball c r (derive_Rball c r f pr) n
           DClass_Rball c r f (S n).

Definition D_Rball c r n f := DClass_Rball c r f n.

Being D_infty

Definition D_infty (f : RR) := n, D n f.
Definition D_Rball_infty c r f := n, D_Rball c r n f.

Definition Dn (n : nat) := sigT (D n).
Definition Dn_Rball c r n := sigT (D_Rball c r n).

Definition Dinfty := sigT D_infty.

Being of Class C_n


Inductive CClass (f : RR) : natType :=
  | C_0 : continuity fCClass f 0
  | C_S : n (pr : derivable f), CClass (derive f pr) nCClass f (S n).

Definition C n f := (CClass f n).

Restriction to a specific Rball.

Inductive CClass_Rball (c r : R) (f : RR) : natType :=
  | Cb_0 : continuity_Rball c r fCClass_Rball c r f 0
  | Cb_S : n (pr : derivable_Rball c r f),
           CClass_Rball c r (derive_Rball c r f pr) n
           CClass_Rball c r f (S n).

Definition C_Rball c r n f := CClass_Rball c r f n.

Being C_infty

Definition C_infty (f : RR) := n, C n f.
Definition C_Rball_infty c r f := n, C_Rball c r n f.

Definition Cn (n : nat) : Type := sigT (C n).
Definition Cn_Rball c r n := sigT (C_Rball c r n).

Definition Cinfty : Type := sigT C_infty.