Library Coqtail.Reals.Rsequence.Rsequence_bound_facts
Require Import Rsequence_def.
Require Import Rsequence_base_facts Rsequence_sums_facts.
Require Import Rsequence_rewrite_facts.
Require Import Fourier.
Require Import MyRIneq.
Open Scope R_scope.
Open Scope Rseq_scope.
Require Import Rsequence_base_facts Rsequence_sums_facts.
Require Import Rsequence_rewrite_facts.
Require Import Fourier.
Require Import MyRIneq.
Open Scope R_scope.
Open Scope Rseq_scope.
Section Rseq_bound_compatibilities.
Variables (Un Vn : Rseq) (lu lv : R).
Hypothesis (Un_bd : Rseq_bound Un lu) (Vn_bd : Rseq_bound Vn lv).
Lemma Rseq_bound_eq : ∀ Wn, Un == Wn →
Rseq_bound Wn lu.
Proof.
intros Wn Heq n ; rewrite <- Heq ; apply Un_bd.
Qed.
Lemma Rseq_bound_opp : Rseq_bound (- Un) lu.
Proof.
intro n ; unfold Rseq_opp ; rewrite Rabs_Ropp ; apply Un_bd.
Qed.
Lemma Rseq_bound_plus : Rseq_bound (Un + Vn) (lu + lv).
Proof.
intro n ; unfold Rseq_plus ;
apply Rle_trans with (Rabs (Un n) + Rabs (Vn n))%R ;
[apply Rabs_triang | apply Rplus_le_compat ; auto].
Qed.
Lemma Rseq_bound_minus : Rseq_bound (Un - Vn) (lu + lv).
Proof.
intro n ; unfold Rseq_minus, Rminus ;
apply Rle_trans with (Rabs (Un n) + Rabs (- Vn n))%R ;
[apply Rabs_triang | rewrite Rabs_Ropp ; apply Rplus_le_compat ; auto].
Qed.
Lemma Rseq_bound_mult : Rseq_bound (Un × Vn) (lu × lv).
Proof.
intro n ; unfold Rseq_mult ; rewrite Rabs_mult ;
apply Rmult_le_compat ; (apply Rabs_pos || auto).
Qed.
Lemma Rseq_bound_sum : Rseq_bound (Rseq_sum Un / Rseq_shift INR) lu.
Proof.
intro n ; induction n ; unfold Rseq_div, Rseq_shift, Rdiv.
simpl ; rewrite Rinv_1, Rmult_1_r ; apply Un_bd.
rewrite Rabs_mult, Rabs_Rinv ; [| apply not_0_INR ; omega].
apply Rmult_Rinv_le_compat ; [apply Rabs_pos_lt ; apply not_0_INR ; omega |].
rewrite (Rabs_pos_eq (INR (S (S n)))), Rseq_sum_simpl, S_INR,
Rmult_plus_distr_r, Rmult_1_l ; [| apply pos_INR].
eapply Rle_trans ; [eapply Rabs_triang |] ; apply Rplus_le_compat.
rewrite <- (Rabs_pos_eq (INR (S n))) ; [| apply pos_INR].
apply Rmult_Rinv_le_compat_contravar ; [apply Rabs_pos_lt ; apply not_0_INR ; omega |].
rewrite <- Rabs_Rinv, <- Rabs_mult ; [apply IHn | apply not_0_INR ; omega].
apply Un_bd.
Qed.
End Rseq_bound_compatibilities.
Lemma Rseq_bound_prod : ∀ (Un Vn : Rseq) (lu lv : R),
Rseq_bound Un lu → Rseq_bound Vn lv →
Rseq_bound ((Un # Vn) / Rseq_shift INR) (lu × lv).
Proof.
intros Un Vn lu lv Un_bd Vn_bd n ; unfold Rseq_prod, Rseq_div ;
apply Rseq_bound_sum ; apply Rseq_bound_mult ;
[apply Un_bd | intro p ; apply Vn_bd].
Qed.