Library Coqtail.Reals.Rsequence.Rsequence_cv_facts
Require Import Rsequence_def.
Require Import Rsequence_base_facts.
Require Import Max Rinterval MyRIneq Ranalysis_def Fourier.
Open Scope R_scope.
Open Scope Rseq_scope.
Section Rseq_cv.
Lemma Rseq_cv_bound :
∀ Un lu, Rseq_cv Un lu → ∃ M, 0 < M ∧ Rseq_bound Un M.
Proof.
intros Un lu Hu.
destruct (Hu 1) as [N HN]; [fourier|].
destruct (Rseq_partial_bound Un N) as [M HM].
∃ (Rmax (1 + (Rabs lu))%R M).
split.
eapply Rlt_le_trans; [|apply RmaxLess1].
apply Rplus_lt_le_0_compat; [fourier|apply Rabs_pos].
intros n.
destruct (le_ge_dec n N) as [He|He].
eapply Rle_trans; [apply HM; assumption|apply RmaxLess2].
eapply Rle_trans; [|apply RmaxLess1].
replace (Un n) with ((Un n - lu) + lu)%R by field.
eapply Rle_trans; [apply Rabs_triang|].
apply Rplus_le_compat.
left; apply HN; assumption.
apply Rle_refl.
Qed.
Lemma Rseq_constant_cv : ∀ r, Rseq_cv (Rseq_constant r) r.
intros r eps Heps; ∃ O; intros n Hn.
unfold R_dist; unfold Rseq_constant.
replace (r - r)%R with 0 by ring.
rewrite Rabs_R0; apply Heps.
Qed.
Lemma Rseq_cv_plus_compat :
∀ Un Vn lu lv,
Rseq_cv Un lu → Rseq_cv Vn lv → Rseq_cv (Un + Vn) (lu + lv).
Proof.
intros Un Vn lu lv Hu Hv eps Heps.
destruct (Hu (eps/2)%R) as [Nu HNu]; [fourier|].
destruct (Hv (eps/2)%R) as [Nv HNv]; [fourier|].
∃ (Max.max Nu Nv).
intros n Hn.
unfold R_dist; unfold Rseq_plus.
replace (Un n + Vn n - (lu + lv))%R
with ((Un n - lu) + (Vn n - lv))%R by field.
eapply Rle_lt_trans; [apply Rabs_triang|].
replace eps with (eps/2 + eps/2)%R by field.
apply Rplus_lt_compat.
apply (HNu n); eapply le_trans; [apply Max.le_max_l|eexact Hn].
apply (HNv n); eapply le_trans; [apply Max.le_max_r|eexact Hn].
Qed.
Lemma Rseq_cv_opp_compat :
∀ Un lu, Rseq_cv Un lu → Rseq_cv (- Un) (- lu).
Proof.
intros Un lu Hu eps Heps.
destruct (Hu eps) as [Nu HNu]; [assumption|].
∃ Nu; intros n Hn.
unfold R_dist; unfold Rseq_opp.
replace (- Un n - - lu)%R with (- (Un n - lu))%R by field.
rewrite Rabs_Ropp.
apply HNu; exact Hn.
Qed.
Lemma Rseq_cv_mult_compat :
∀ Un Vn lu lv,
Rseq_cv Un lu → Rseq_cv Vn lv → Rseq_cv (Un × Vn) (lu × lv).
Proof.
intros Un Vn lu lv Hu Hv eps Heps.
destruct (Rseq_cv_bound Un lu) as [Mb [HMb Hb]]; [assumption|].
pose (eps1 := (eps / 2 / (Rmax 1 (Rabs lv)))%R).
pose (eps2 := (eps / 2 / Mb)%R).
assert (Heps1 : eps1 > 0).
unfold eps1; repeat apply Rmult_gt_0_compat; try fourier.
apply Rinv_0_lt_compat; eapply Rlt_le_trans; [apply Rlt_0_1|apply RmaxLess1].
assert (Heps2 : eps2 > 0).
unfold eps2; repeat apply Rmult_gt_0_compat; try fourier.
apply Rinv_0_lt_compat; assumption.
destruct (Hu eps1) as [Nu HNu]; [assumption|].
destruct (Hv eps2) as [Nv HNv]; [assumption|].
∃ (Max.max Nu Nv); intros n Hn.
unfold R_dist; unfold Rseq_mult.
replace (Un n × Vn n - lu × lv)%R
with ((Un n × Vn n - Un n × lv) + (Un n × lv - lu × lv))%R
by field.
eapply Rle_lt_trans; [apply Rabs_triang|].
replace eps with (eps / 2 + eps / 2)%R by field.
apply Rplus_lt_compat.
rewrite <- Rmult_minus_distr_l; rewrite Rabs_mult.
eapply Rle_lt_trans.
apply Rmult_le_compat_r; [apply Rabs_pos|].
apply Hb.
replace (eps / 2)%R with (Mb × (eps / 2 / Mb))%R
by (field; apply Rgt_not_eq; assumption).
apply Rmult_lt_compat_l; [assumption|].
apply HNv; eapply le_trans; [apply Max.le_max_r|eexact Hn].
unfold Rminus; rewrite <- Ropp_mult_distr_l_reverse.
rewrite <- Rmult_plus_distr_r.
rewrite Rabs_mult.
destruct (Req_dec lv 0) as [Hlv|Hlv].
rewrite Hlv; rewrite Rabs_R0; rewrite Rmult_0_r; fourier.
eapply Rlt_le_trans.
apply Rmult_lt_compat_r; [apply Rabs_pos_lt; assumption|].
apply HNu; eapply le_trans; [apply Max.le_max_l|eexact Hn].
unfold eps1.
unfold Rdiv; rewrite Rmult_assoc; rewrite <- Rmult_1_r.
apply Rmult_le_compat_l; [fourier|].
assert (Hmax : Rmax 1 (Rabs lv) > 0).
eapply Rlt_le_trans with 1; [fourier|apply RmaxLess1].
pattern 1 at 2; rewrite <- (Rinv_l (Rmax 1 (Rabs lv))).
apply Rmult_le_compat_l.
left; apply Rinv_0_lt_compat; assumption.
apply RmaxLess2.
apply Rgt_not_eq; assumption.
Qed.
Lemma Rseq_cv_pow_compat : ∀ An d l,
Rseq_cv An l → Rseq_cv (fun n ⇒ An n ^ d) (l ^ d).
Proof.
intros An d ; revert An ; induction d ; intros An l HAn.
simpl ; apply Rseq_constant_cv.
simpl ; apply Rseq_cv_mult_compat ; [| apply IHd] ; assumption.
Qed.
Lemma Rseq_cv_inv_compat :
∀ Un lu, Rseq_cv Un lu → lu ≠ 0 → Rseq_cv (/ Un) (/ lu).
Proof.
intros Un lu Hu H eps Heps.
destruct (Hu (Rabs lu / 2))%R as [Ninf Hinf].
apply Rmult_lt_0_compat; [apply Rabs_pos_lt|fourier]; assumption.
destruct (Hu (/2 × Rabs lu × Rabs lu × eps))%R as [N HN].
repeat apply Rmult_lt_0_compat; (apply Rabs_pos_lt || fourier); assumption.
∃ (Max.max Ninf N).
intros n Hn.
unfold R_dist; unfold Rseq_inv.
assert (Habs : Rabs lu / 2 ≤ Rabs (Un n)).
replace (Rabs lu / 2)%R with
(Rabs lu - Rabs lu / 2)%R by field.
assert (Hr : Rabs (Un n - lu) < Rabs lu / 2).
apply Hinf; eapply le_trans; [apply Max.le_max_l|eexact Hn].
unfold Rabs; repeat destruct Rcase_abs;
unfold Rabs in Hr; repeat destruct Rcase_abs in Hr; fourier.
assert (Hpos : Un n ≠ 0).
unfold Rabs in Habs; repeat destruct Rcase_abs in Habs;
try (apply Rlt_not_eq || apply Rgt_not_eq; fourier).
apply Rgt_not_eq; eapply Rlt_le_trans; [|eexact Habs].
unfold Rdiv; rewrite Ropp_mult_distr_l_reverse; fourier.
apply Rgt_not_eq; eapply Rlt_le_trans; [|eexact Habs].
unfold Rdiv; apply Rmult_lt_0_compat; auto with real.
destruct (Rle_lt_or_eq_dec 0 lu); auto with real.
subst; elim H; reflexivity.
replace (/ Un n - / lu)%R with
(/ lu × / Un n × (lu - Un n))%R by (field; tauto).
repeat rewrite Rabs_mult.
repeat rewrite Rabs_Rinv; try assumption.
rewrite Rabs_minus_sym.
eapply Rlt_le_trans.
apply Rmult_lt_compat_l.
apply Rmult_lt_0_compat; apply Rinv_0_lt_compat;
apply Rabs_pos_lt; assumption.
apply HN; eapply le_trans; [apply Max.le_max_r|eexact Hn].
replace (/ Rabs lu × / Rabs (Un n) × (/2 × Rabs lu × Rabs lu × eps))%R
with (/ Rabs (Un n) × (/2 × Rabs lu) × eps)%R
by (field; split; apply Rabs_no_R0; assumption).
rewrite <- Rmult_1_l.
apply Rmult_le_compat_r; auto with real.
eapply Rle_trans.
apply Rmult_le_compat_r.
replace 0%R with (0 × 0)%R by field.
apply Rmult_le_compat; auto with real; apply Rabs_pos.
destruct Habs as [Habs|Habs].
left; apply Rinv_lt_contravar; [|eassumption].
repeat apply Rmult_lt_0_compat; auto with real; apply Rabs_pos_lt; assumption.
rewrite Habs; right; reflexivity.
right; field.
apply Rabs_no_R0; assumption.
Qed.
Lemma Rseq_cv_minus_compat : ∀ Un Vn lu lv,
Rseq_cv Un lu → Rseq_cv Vn lv → Rseq_cv (Un - Vn) (lu - lv).
Proof.
intros Un Vn lu lv Hlu Hlv.
apply Rseq_cv_eq_compat with (Un + (-Vn)).
intros n; reflexivity.
apply Rseq_cv_plus_compat; [apply Hlu|].
apply Rseq_cv_opp_compat; apply Hlv.
Qed.
Lemma Rseq_cv_div_compat :
∀ Un Vn lu lv,
Rseq_cv Un lu → Rseq_cv Vn lv → lv ≠ 0 → Rseq_cv (Un / Vn) (lu / lv).
Proof.
intros Un Vn lu lv Hu Hv H.
unfold Rseq_div, Rdiv.
apply Rseq_cv_eq_compat with (Un × (/ Vn)).
intros n; reflexivity.
apply Rseq_cv_mult_compat; [apply Hu|].
apply Rseq_cv_inv_compat; [apply Hv|apply H].
Qed.
Lemma Rseq_cv_continuity_compat :
∀ Un lu f, Rseq_cv Un lu → continuity_pt f lu → Rseq_cv (fun n ⇒ f (Un n)) (f lu).
Proof.
intros Un lu f Hu Hf eps Heps.
destruct (Hf eps) as [h [Hh H]]; [assumption|simpl in H].
destruct (Hu h) as [N HN]; [assumption|].
∃ N; intros n Hn.
destruct (Req_dec lu (Un n)) as [Heq|Heq].
rewrite Heq; rewrite R_dist_eq; assumption.
apply H; split; [compute; tauto|].
apply HN; assumption.
Qed.
Lemma Rseq_cv_continuity_interval_compat : ∀ Un lu f a b,
interval a b lu → (∀ n, interval a b (Un n)) →
Rseq_cv Un lu → continuity_interval a b f →
Rseq_cv (fun n ⇒ f (Un n)) (f lu).
Proof.
intros Un lu f a b lu_in Un_in Hu Hf eps eps_pos.
destruct (Hf _ lu_in _ eps_pos) as [h [h_pos Hh]] ; simpl in Hh.
destruct (Hu _ h_pos) as [N HN] ; ∃ N ; intros n n_lb.
destruct (Req_dec lu (Un n)) as [Heq | Hneq].
rewrite Heq, R_dist_eq ; assumption.
apply Hh ; split ; [apply Un_in | apply HN ; assumption].
Qed.
Lemma Rseq_cv_abs_compat : ∀ (Un : nat → R) (l : R),
Rseq_cv Un l → Rseq_cv (|Un|) (Rabs l).
Proof.
intros Un l Hl eps Heps.
destruct (Hl eps Heps) as [N HN].
∃ N.
intros n Hn.
unfold R_dist.
apply Rle_lt_trans with (Rabs (Un n - l)).
apply Rabs_triang_inv2.
apply HN; apply Hn.
Qed.
Lemma Rseq_cv_even_odd_compat : ∀ (Un : Rseq) (l : R),
Rseq_cv (fun i ⇒ Un (2 × i)%nat) l →
Rseq_cv (fun i ⇒ Un (S (2 × i))%nat) l →
Rseq_cv Un l.
Proof.
intros Un l Heven Hodd eps eps_pos ;
destruct (Heven _ eps_pos) as [N1 HN1] ;
destruct (Hodd _ eps_pos) as [N2 HN2] ;
∃ (max (2 × N1) (S (2 × N2))) ; intros n n_lb ;
destruct (n_modulo_2 n) as [[p Hp] | [p Hp]] ; subst.
apply HN1 ; assert (H := max_lub_l _ _ _ n_lb) ; omega.
apply HN2 ; assert (H := max_lub_r _ _ _ n_lb) ; omega.
Qed.
End Rseq_cv.
Section Rseq_cv_infty.
Variable Un Vn : nat → R.
Lemma Rseq_cv_pos_infty_plus_compat :
Rseq_cv_pos_infty Un → Rseq_cv_pos_infty Vn →
Rseq_cv_pos_infty (Un + Vn).
Proof.
intros Hu Hv M.
destruct (Hu (M / 2)%R) as [Nu HNu].
destruct (Hv (M / 2)%R) as [Nv HNv].
∃ (Max.max Nu Nv); intros n Hn.
unfold Rseq_plus.
replace M with (M / 2 + M / 2)%R by field.
apply Rplus_lt_compat.
apply HNu; eapply le_trans; [apply Max.le_max_l|eexact Hn].
apply HNv; eapply le_trans; [apply Max.le_max_r|eexact Hn].
Qed.
Lemma Rseq_cv_finite_plus_pos_infty_r : ∀ l,
Rseq_cv Un l → Rseq_cv_pos_infty Vn →
Rseq_cv_pos_infty (Un + Vn).
Proof.
intros l Hl Hf m.
destruct (Hl 1 Rlt_zero_1) as [N HN].
destruct (Hf (m-(l -1))%R) as [N0 HN0].
∃ (N+N0)%nat.
intros n Hn.
apply Rle_lt_trans with ((l-1)+ (m-(l-1)))%R.
ring_simplify; apply Rle_refl.
apply Rplus_lt_compat.
apply Rminus_lt.
unfold Rminus.
rewrite Rplus_comm.
rewrite <- Rplus_assoc.
rewrite Rplus_comm.
replace 0 with (-1 + 1)%R by ring.
apply Rplus_lt_compat_l.
apply Rle_lt_trans with (Rabs (- Un n+ l)).
apply RRle_abs.
rewrite Rplus_comm.
fold (Rminus l (Un n)).
fold (R_dist l (Un n)).
rewrite R_dist_sym.
apply HN; omega.
apply HN0; omega.
Qed.
Lemma Rseq_cv_finite_plus_pos_infty_l : ∀ l,
Rseq_cv_pos_infty Vn → Rseq_cv Un l →
Rseq_cv_pos_infty (Vn + Un).
Proof.
intros l Hf Hl m.
destruct (Hl 1 Rlt_zero_1) as [N HN].
destruct (Hf (m-(l -1))%R) as [N0 HN0].
∃ (N+N0)%nat.
intros n Hn.
apply Rle_lt_trans with ((m-(l-1))+ (l-1))%R.
ring_simplify; apply Rle_refl.
apply Rplus_lt_compat.
apply HN0; omega.
apply Rminus_lt.
unfold Rminus.
rewrite Rplus_comm.
rewrite <- Rplus_assoc.
rewrite Rplus_comm.
replace 0 with (-1 + 1)%R by ring.
apply Rplus_lt_compat_l.
apply Rle_lt_trans with (Rabs (- Un n+ l)).
apply RRle_abs.
rewrite Rplus_comm.
fold (Rminus l (Un n)).
fold (R_dist l (Un n)).
rewrite R_dist_sym.
apply HN; omega.
Qed.
Lemma Rseq_cv_pos_pos_infty_mult :
Rseq_cv_pos_infty Un → Rseq_cv_pos_infty Vn →
Rseq_cv_pos_infty (Un × Vn).
Proof.
intros Hu Hv M.
destruct (Hu (Rabs M)) as [Nu HNu].
destruct (Hv 1) as [Nv HNv].
∃ (Max.max Nu Nv); intros n Hn.
unfold Rseq_mult.
apply Rle_lt_trans with (Rabs M).
apply RRle_abs.
replace (Rabs M) with ((Rabs M)*1)%R by apply Rmult_1_r.
apply Rmult_le_0_lt_compat.
apply Rabs_pos.
apply Rle_0_1.
apply HNu; eapply le_trans; [apply Max.le_max_l|eexact Hn].
apply HNv; eapply le_trans; [apply Max.le_max_r|eexact Hn].
Qed.
Lemma Rseq_cv_neg_neg_infty_mult :
Rseq_cv_neg_infty Un → Rseq_cv_neg_infty Vn →
Rseq_cv_pos_infty (Un × Vn).
Proof.
intros Hu Hv M.
destruct (Hu (- (Rabs M))%R) as [Nu HNu].
destruct (Hv (-1)) as [Nv HNv].
∃ (Max.max Nu Nv); intros n Hn.
unfold Rseq_mult.
apply Rle_lt_trans with (Rabs M).
apply RRle_abs.
replace (Un n × Vn n)%R with ((- Un n) *( - Vn n))%R by ring.
replace (Rabs M)%R with (( - -Rabs M) *( - - 1))%R by ring.
apply Rmult_le_0_lt_compat.
rewrite Ropp_involutive; apply Rabs_pos.
rewrite Ropp_involutive; apply Rle_0_1.
apply Ropp_lt_contravar; apply HNu; eapply le_trans; [apply Max.le_max_l|eexact Hn].
apply Ropp_lt_contravar; apply HNv; eapply le_trans; [apply Max.le_max_r|eexact Hn].
Qed.
Lemma Rseq_cv_pos_neg_infty_mult :
Rseq_cv_pos_infty Un → Rseq_cv_neg_infty Vn →
Rseq_cv_neg_infty (Un × Vn).
Proof.
intros Hu Hv M.
destruct (Hu (Rabs M)%R) as [Nu HNu].
destruct (Hv (-1)) as [Nv HNv].
∃ (Max.max Nu Nv); intros n Hn.
unfold Rseq_mult.
apply Rlt_le_trans with (- Rabs M)%R.
replace (Un n × Vn n)%R with (-(Un n × (- Vn n)))%R by ring.
apply Ropp_lt_contravar.
replace (Rabs M)%R with ((Rabs M) × (- - 1))%R by ring.
apply Rmult_le_0_lt_compat.
apply Rabs_pos.
rewrite Ropp_involutive; apply Rle_0_1.
apply HNu; eapply le_trans; [apply Max.le_max_l|eexact Hn].
apply Ropp_lt_contravar; apply HNv; eapply le_trans; [apply Max.le_max_r|eexact Hn].
replace M with (- -M)%R by ring; apply Ropp_le_contravar; rewrite Ropp_involutive.
rewrite <- Rabs_Ropp.
apply RRle_abs.
Qed.
Lemma Rseq_cv_neg_pos_infty_mult :
Rseq_cv_pos_infty Un → Rseq_cv_neg_infty Vn →
Rseq_cv_neg_infty (Vn × Un).
Proof.
intros Hu Hv M.
destruct (Rseq_cv_pos_neg_infty_mult Hu Hv M) as [N HN].
∃ N; intros n Hn.
unfold Rseq_mult; rewrite Rmult_comm.
apply HN; apply Hn.
Qed.
Lemma Rseq_cv_finite_plus_neg_infty_r : ∀ l,
Rseq_cv Un l → Rseq_cv_neg_infty Vn →
Rseq_cv_neg_infty (Un + Vn).
Proof.
intros l Hl Hf M.
destruct (Hl 1 Rlt_zero_1) as [N HN].
destruct (Hf (M-(l +1))%R) as [N0 HN0].
∃ (N+N0)%nat.
intros n Hn.
apply Rlt_le_trans with ((l+1)+ (M-(l+1)))%R.
apply Rplus_lt_compat.
apply Rminus_lt.
unfold Rminus.
rewrite Ropp_plus_distr.
rewrite <- Rplus_assoc.
rewrite Rplus_comm.
replace 0 with (-1 + 1)%R by ring.
apply Rplus_lt_compat_l.
apply Rle_lt_trans with (Rabs (Un n+ - l)).
apply RRle_abs.
apply HN; omega.
apply HN0; omega.
ring_simplify; apply Rle_refl.
Qed.
Lemma Rseq_cv_finite_plus_neg_infty_l : ∀ l,
Rseq_cv_neg_infty Vn → Rseq_cv Un l →
Rseq_cv_neg_infty (Vn + Un).
Proof.
intros l Hf Hl M.
destruct (Hl 1 Rlt_zero_1) as [N HN].
destruct (Hf (M-(l +1))%R) as [N0 HN0].
∃ (N+N0)%nat.
intros n Hn.
apply Rlt_le_trans with ((M-(l+1)) +(l+1))%R.
apply Rplus_lt_compat.
apply HN0; omega.
apply Rminus_lt.
unfold Rminus.
rewrite Ropp_plus_distr.
rewrite <- Rplus_assoc.
rewrite Rplus_comm.
replace 0 with (-1 + 1)%R by ring.
apply Rplus_lt_compat_l.
apply Rle_lt_trans with (Rabs (Un n+ - l)).
apply RRle_abs.
apply HN; omega.
ring_simplify; apply Rle_refl.
Qed.
Lemma Rseq_cv_finite_minus_neg_infty : ∀ l,
Rseq_cv Un l → Rseq_cv_neg_infty Vn →
Rseq_cv_pos_infty (Un - Vn).
Proof.
intros l Hl Hf M.
destruct (Hl 1 Rlt_zero_1) as [N HN].
destruct (Hf (-M+(l -1))%R) as [N0 HN0].
∃ (N+N0)%nat.
intros n Hn.
apply Rle_lt_trans with ((l-1)+ -(-M+(l -1)))%R.
ring_simplify; apply Rle_refl.
apply Rplus_lt_compat.
apply Rminus_lt.
unfold Rminus.
rewrite Rplus_comm.
rewrite <- Rplus_assoc.
rewrite Rplus_comm.
replace 0 with (-1 + 1)%R by ring.
apply Rplus_lt_compat_l.
apply Rle_lt_trans with (Rabs (- Un n+ l)).
apply RRle_abs.
rewrite Rplus_comm.
fold (Rminus l (Un n)).
fold (R_dist l (Un n)).
rewrite R_dist_sym.
apply HN; omega.
apply Ropp_gt_lt_contravar.
apply HN0; omega.
Qed.
Lemma Rseq_cv_finite_minus_pos_infty : ∀ l,
Rseq_cv Un l → Rseq_cv_pos_infty Vn →
Rseq_cv_neg_infty (Un - Vn).
Proof.
intros l Hl Hf M.
destruct (Hl 1 Rlt_zero_1) as [N HN].
destruct (Hf ((l +1)+ -M)%R) as [N0 HN0].
∃ (N+N0)%nat.
intros n Hn.
apply Rlt_le_trans with ((l+1)+ -((l +1)+-M))%R.
apply Rplus_lt_compat.
apply Rminus_lt.
unfold Rminus.
rewrite Ropp_plus_distr.
rewrite <- Rplus_assoc.
rewrite Rplus_comm.
replace 0 with (-1 + 1)%R by ring.
apply Rplus_lt_compat_l.
apply Rle_lt_trans with (Rabs (Un n+ - l)).
apply RRle_abs.
apply HN; omega.
apply Ropp_gt_lt_contravar.
apply HN0; omega.
ring_simplify; apply Rle_refl.
Qed.
Lemma Rseq_cv_pos_minus_neg_infty :
Rseq_cv_pos_infty Un → Rseq_cv_neg_infty Vn → Rseq_cv_pos_infty (Un - Vn).
Proof.
intros Hl Hf M.
destruct (Hl M) as [N HN].
destruct (Hf 0%R) as [N0 HN0].
∃ (N+N0)%nat.
intros n Hn.
apply Rle_lt_trans with (M+-0)%R.
ring_simplify; apply Rle_refl.
apply Rplus_lt_compat.
apply HN; omega.
apply Ropp_gt_lt_contravar.
apply HN0; omega.
Qed.
Lemma Rseq_cv_neg_minus_pos_infty :
Rseq_cv_neg_infty Un → Rseq_cv_pos_infty Vn → Rseq_cv_neg_infty (Un - Vn).
Proof.
intros Hl Hf M.
destruct (Hl M) as [N HN].
destruct (Hf 0%R) as [N0 HN0].
∃ (N+N0)%nat.
intros n Hn.
apply Rlt_le_trans with (M+-0)%R.
apply Rplus_lt_compat.
apply HN; omega.
apply Ropp_gt_lt_contravar.
apply HN0; omega.
ring_simplify; apply Rle_refl.
Qed.
Lemma Rseq_cv_finite_pos_mult_pos_infty_r : ∀ l,
0 < l → Rseq_cv Un l → Rseq_cv_pos_infty Vn →
Rseq_cv_pos_infty (Un × Vn).
Proof.
intros l Hl Hu Hv M.
destruct (Hu (l×/2)%R) as [N HN].
repeat apply Rmult_gt_0_compat; try fourier.
destruct (Hv ((Rabs M)*(/l×2))%R) as [N0 HN0].
∃ (N+N0)%nat; intros n Hn.
apply Rle_lt_trans with ((l×/2)*((Rabs M)*(2×/l)))%R.
replace ((l×/2)*((Rabs M)*(2×/l)))%R with (Rabs M).
apply RRle_abs.
field.
apply Rgt_not_eq; exact Hl.
apply Rmult_le_0_lt_compat.
repeat apply Rmult_gt_0_compat; try fourier.
replace 0%R with (Rabs M × 0)%R by field.
apply Rmult_le_compat_l.
apply Rabs_pos.
apply Rlt_le.
repeat apply Rmult_gt_0_compat; try fourier.
apply Rinv_0_lt_compat.
exact Hl.
replace (l × /2)%R with (l - (l × /2))%R by field.
apply Rminus_lt.
unfold Rminus.
rewrite Rplus_comm.
rewrite <- Rplus_assoc.
rewrite Rplus_comm.
replace 0 with (- (l × /2) + (l × /2))%R by ring.
apply Rplus_lt_compat_l.
apply Rle_lt_trans with (Rabs (Un n+ - l)).
rewrite <- Rabs_Ropp.
rewrite Ropp_plus_distr, Ropp_involutive.
apply RRle_abs.
apply HN; omega.
rewrite (Rmult_comm 2 (/l)).
apply HN0; omega.
Qed.
Lemma Rseq_cv_finite_neg_mult_pos_infty_r : ∀ l,
l < 0 → Rseq_cv Un l → Rseq_cv_pos_infty Vn →
Rseq_cv_neg_infty (Un × Vn).
Proof.
intros l Hl Hu Hv M.
destruct (Hu (-(l×/2))%R) as [N HN].
repeat apply Rmult_gt_0_compat; try fourier.
destruct (Hv (-(Rabs M)*(/l×2))%R) as [N0 HN0].
∃ (N+N0)%nat; intros n Hn.
apply Rlt_le_trans with ((l×/2)*(-(Rabs M)*(2×/l)))%R.
replace ((Un × Vn)%Rseq n) with (Un n × Vn n)%R by reflexivity.
apply Ropp_lt_cancel.
rewrite <- Ropp_mult_distr_l_reverse, <- (Ropp_mult_distr_l_reverse (Un n) (Vn n)).
apply Rmult_le_0_lt_compat.
repeat apply Rmult_gt_0_compat; try fourier.
replace (-(Rabs M)*(2×/l))%R with ((Rabs M)*(- 2×/l))%R by ring.
replace 0%R with (Rabs M × 0)%R by field.
apply Rmult_le_compat_l.
apply Rabs_pos.
apply Rlt_le.
rewrite Ropp_mult_distr_l_reverse, <- Ropp_mult_distr_r_reverse.
repeat apply Rmult_gt_0_compat; try fourier.
apply Ropp_0_gt_lt_contravar.
apply Rinv_lt_0_compat.
exact Hl.
apply Ropp_gt_lt_contravar.
replace (l × /2)%R with (l - (l × /2))%R by field.
apply Rminus_lt.
unfold Rminus.
rewrite Ropp_plus_distr, Ropp_involutive, <- Rplus_assoc.
replace 0 with (- (l × /2) + (l × /2))%R by ring.
apply Rplus_lt_compat_r.
apply Rle_lt_trans with (Rabs (Un n+ - l)).
apply RRle_abs.
apply HN; omega.
rewrite (Rmult_comm 2 (/l)).
apply HN0; omega.
replace (l × /2 × (- Rabs M *(2 × /l)))%R with (- Rabs M)%R.
rewrite <- (Ropp_involutive M).
apply Ropp_ge_le_contravar.
rewrite Rabs_Ropp.
apply Rle_ge.
apply RRle_abs.
field.
apply Rlt_not_eq.
exact Hl.
Qed.
Lemma Rseq_cv_finite_pos_mult_neg_infty_r : ∀ l,
0 < l → Rseq_cv Un l → Rseq_cv_neg_infty Vn →
Rseq_cv_neg_infty (Un × Vn).
Proof.
intros l Hl Hu Hv M.
destruct (Hu (l×/2)%R) as [N HN].
repeat apply Rmult_gt_0_compat; try fourier.
destruct (Hv (-(Rabs M)*(/l×2))%R) as [N0 HN0].
∃ (N+N0)%nat; intros n Hn.
apply Rlt_le_trans with ((l×/2)*(-(Rabs M)*(2×/l)))%R.
replace ((Un × Vn)%Rseq n)%R with (Un n × Vn n)%R by reflexivity.
apply Ropp_lt_cancel.
replace (- (l ×/2 *(- Rabs M × (2 × /l))))%R
with (l ×/2 *( Rabs M × (2 × /l)))%R by ring.
rewrite <- (Ropp_mult_distr_r_reverse (Un n) (Vn n)).
apply Rmult_le_0_lt_compat.
repeat apply Rmult_gt_0_compat; try fourier.
replace 0%R with (Rabs M × 0)%R by field.
apply Rmult_le_compat_l.
apply Rabs_pos.
apply Rlt_le.
repeat apply Rmult_gt_0_compat; try fourier.
apply Rinv_0_lt_compat.
exact Hl.
replace (l × /2)%R with (l - (l × /2))%R by field.
apply Rminus_lt.
unfold Rminus.
rewrite Rplus_comm, <- Rplus_assoc, Rplus_comm.
replace 0 with (- (l × /2) + (l × /2))%R by ring.
apply Rplus_lt_compat_l.
apply Rle_lt_trans with (Rabs (Un n+ - l)).
rewrite <- Rabs_Ropp, Ropp_plus_distr, Ropp_involutive.
apply RRle_abs.
apply HN; omega.
apply Ropp_lt_cancel.
rewrite (Rmult_comm 2 (/l)), <- Ropp_mult_distr_l_reverse, Ropp_involutive.
apply HN0; omega.
replace (l × /2 × (- Rabs M *(2 × /l)))%R with (- Rabs M)%R.
rewrite <- (Ropp_involutive M).
apply Ropp_ge_le_contravar.
rewrite Rabs_Ropp.
apply Rle_ge.
apply RRle_abs.
field.
apply Rgt_not_eq.
exact Hl.
Qed.
Lemma Rseq_cv_finite_neg_mult_neg_infty_r : ∀ l,
l < 0 → Rseq_cv Un l → Rseq_cv_neg_infty Vn →
Rseq_cv_pos_infty (Un × Vn).
Proof.
intros l Hl Hu Hv M.
destruct (Hu (-(l×/2))%R) as [N HN].
repeat apply Rmult_gt_0_compat; try fourier.
destruct (Hv ((Rabs M)*(/l×2))%R) as [N0 HN0].
∃ (N+N0)%nat; intros n Hn.
apply Rle_lt_trans with (-(l×/2)*(-(Rabs M)*(2×/l)))%R.
replace (-(l×/2)*(-(Rabs M)*(2×/l)))%R with (Rabs M).
apply RRle_abs.
field.
apply Rlt_not_eq.
exact Hl.
replace ((Un × Vn)%Rseq n) with (Un n × Vn n)%R by reflexivity.
replace (Un n × Vn n)%R with ((- Un n) × (- Vn n))%R by ring.
apply Rmult_le_0_lt_compat.
repeat apply Rmult_gt_0_compat; try fourier.
replace (-(Rabs M)*(2×/l))%R with ((Rabs M)*(- 2×/l))%R by ring.
replace 0%R with (Rabs M × 0)%R by field.
apply Rmult_le_compat_l.
apply Rabs_pos.
apply Rlt_le.
rewrite Ropp_mult_distr_l_reverse, <- Ropp_mult_distr_r_reverse.
repeat apply Rmult_gt_0_compat; try fourier.
apply Ropp_0_gt_lt_contravar.
apply Rinv_lt_0_compat.
exact Hl.
apply Ropp_lt_contravar.
replace (l × /2)%R with (l - (l × /2))%R by field.
apply Rminus_lt.
unfold Rminus.
rewrite Ropp_plus_distr, Ropp_involutive, <- Rplus_assoc.
replace 0 with (- (l × /2) + (l × /2))%R by ring.
apply Rplus_lt_compat_r.
apply Rle_lt_trans with (Rabs (Un n+ - l)).
apply RRle_abs.
apply HN; omega.
rewrite Ropp_mult_distr_l_reverse.
apply Ropp_gt_lt_contravar.
apply Rlt_gt.
rewrite (Rmult_comm 2 (/l)).
apply HN0; omega.
Qed.
Lemma Rseq_cv_finite_pos_mult_pos_infty_l : ∀ l,
0 < l → Rseq_cv Un l → Rseq_cv_pos_infty Vn →
Rseq_cv_pos_infty (Vn × Un).
Proof.
intros l Hl Hu Hv M.
destruct (Hu (l×/2)%R) as [N HN].
repeat apply Rmult_gt_0_compat; try fourier.
destruct (Hv ((Rabs M)*(/l×2))%R) as [N0 HN0].
∃ (N+N0)%nat; intros n Hn.
apply Rle_lt_trans with ((l×/2)*((Rabs M)*(2×/l)))%R.
replace (l ×/2 × (Rabs M × (2 × /l)))%R with (Rabs M).
apply RRle_abs.
field.
apply Rgt_not_eq.
exact Hl.
replace ((Vn × Un)%Rseq n) with (Vn n × Un n)%R by reflexivity.
rewrite (Rmult_comm (Vn n) (Un n)).
apply Rmult_le_0_lt_compat.
repeat apply Rmult_gt_0_compat; try fourier.
replace 0%R with (Rabs M × 0)%R by field.
apply Rmult_le_compat_l.
apply Rabs_pos.
apply Rlt_le.
repeat apply Rmult_gt_0_compat; try fourier.
apply Rinv_0_lt_compat.
exact Hl.
replace (l × /2)%R with (l - (l × /2))%R by field.
apply Rminus_lt.
unfold Rminus.
rewrite Rplus_comm.
rewrite <- Rplus_assoc.
rewrite Rplus_comm.
replace 0 with (- (l × /2) + (l × /2))%R by ring.
apply Rplus_lt_compat_l.
apply Rle_lt_trans with (Rabs (Un n+ - l)).
rewrite <- Rabs_Ropp.
rewrite Ropp_plus_distr.
rewrite Ropp_involutive.
apply RRle_abs.
apply HN; omega.
rewrite (Rmult_comm 2 (/l)).
apply HN0; omega.
Qed.
Lemma Rseq_cv_finite_neg_mult_pos_infty_l : ∀ l,
l < 0 → Rseq_cv Un l → Rseq_cv_pos_infty Vn →
Rseq_cv_neg_infty (Vn × Un).
Proof.
intros l Hl Hu Hv M.
destruct (Hu (-(l×/2))%R) as [N HN].
repeat apply Rmult_gt_0_compat; try fourier.
destruct (Hv (-(Rabs M)*(/l×2))%R) as [N0 HN0].
∃ (N+N0)%nat; intros n Hn.
apply Rlt_le_trans with ((l×/2)*(-(Rabs M)*(2×/l)))%R.
apply Ropp_lt_cancel.
rewrite <- Ropp_mult_distr_l_reverse.
replace ((Vn × Un)%Rseq n) with (Vn n × Un n)%R by reflexivity.
rewrite (Rmult_comm (Vn n) (Un n)).
rewrite <- (Ropp_mult_distr_l_reverse (Un n) (Vn n)).
apply Rmult_le_0_lt_compat.
apply Rlt_le.
repeat apply Rmult_gt_0_compat; try fourier.
replace (-(Rabs M)*(2×/l))%R with ((Rabs M)*(- 2×/l))%R by ring.
replace 0%R with (Rabs M × 0)%R by field.
apply Rmult_le_compat_l.
apply Rabs_pos.
apply Rlt_le.
rewrite Ropp_mult_distr_l_reverse, <- Ropp_mult_distr_r_reverse.
repeat apply Rmult_gt_0_compat; try fourier.
apply Ropp_0_gt_lt_contravar.
apply Rinv_lt_0_compat.
exact Hl.
apply Ropp_gt_lt_contravar.
replace (l × /2)%R with (l - (l × /2))%R by field.
apply Rminus_lt.
unfold Rminus.
rewrite Ropp_plus_distr.
rewrite Ropp_involutive.
rewrite <- Rplus_assoc.
replace 0 with (- (l × /2) + (l × /2))%R by ring.
apply Rplus_lt_compat_r.
apply Rle_lt_trans with (Rabs (Un n+ - l)).
apply RRle_abs.
apply HN; omega.
rewrite (Rmult_comm 2 (/l)).
apply HN0; omega.
replace (l × /2 × (- Rabs M *(2 × /l)))%R with (- Rabs M)%R.
rewrite <- (Ropp_involutive M).
apply Ropp_ge_le_contravar.
rewrite Rabs_Ropp.
apply Rle_ge.
apply RRle_abs.
field.
apply Rlt_not_eq.
exact Hl.
Qed.
Lemma Rseq_cv_finite_pos_mult_neg_infty_l : ∀ l,
0 < l → Rseq_cv Un l → Rseq_cv_neg_infty Vn →
Rseq_cv_neg_infty (Vn × Un).
Proof.
intros l Hl Hu Hv M.
destruct (Hu (l×/2)%R) as [N HN].
repeat apply Rmult_gt_0_compat; try fourier.
destruct (Hv (-(Rabs M)*(/l×2))%R) as [N0 HN0].
∃ (N+N0)%nat; intros n Hn.
apply Rlt_le_trans with ((l×/2)*(-(Rabs M)*(2×/l)))%R.
replace ((Vn × Un)%Rseq n) with (Vn n × Un n)%R by reflexivity.
rewrite (Rmult_comm (Vn n) (Un n)).
apply Ropp_lt_cancel.
rewrite <- (Ropp_mult_distr_r_reverse (Un n) (Vn n)).
rewrite <- Ropp_mult_distr_r_reverse, <- Ropp_mult_distr_l_reverse, Ropp_involutive.
replace (- (l × /2 × (- Rabs M × (2 × /l))))%R with (l × /2 × (Rabs M × (2 × /l)))%R by ring.
apply Rmult_le_0_lt_compat.
repeat apply Rmult_gt_0_compat; try fourier.
replace 0%R with (Rabs M × 0)%R by field.
apply Rmult_le_compat_l.
apply Rabs_pos.
apply Rlt_le.
repeat apply Rmult_gt_0_compat; try fourier.
apply Rinv_0_lt_compat.
exact Hl.
replace (l × /2)%R with (l - (l × /2))%R by field.
apply Rminus_lt.
unfold Rminus.
rewrite Rplus_comm, <- Rplus_assoc, Rplus_comm.
replace 0 with (- (l × /2) + (l × /2))%R by ring.
apply Rplus_lt_compat_l.
apply Rle_lt_trans with (Rabs (Un n+ - l)).
rewrite <- Rabs_Ropp, Ropp_plus_distr, Ropp_involutive.
apply RRle_abs.
apply HN; omega.
apply Ropp_lt_cancel.
rewrite (Rmult_comm 2 (/l)), <- Ropp_mult_distr_l_reverse, Ropp_involutive.
apply HN0; omega.
replace (l × /2 × (- Rabs M *(2 × /l)))%R with (- Rabs M)%R.
rewrite <- (Ropp_involutive M).
apply Ropp_ge_le_contravar.
rewrite Rabs_Ropp.
apply Rle_ge.
apply RRle_abs.
field.
apply Rgt_not_eq.
exact Hl.
Qed.
Lemma Rseq_cv_finite_neg_mult_neg_infty_l : ∀ l,
l < 0 → Rseq_cv Un l → Rseq_cv_neg_infty Vn →
Rseq_cv_pos_infty (Vn × Un).
Proof.
intros l Hl Hu Hv M.
destruct (Hu (-(l×/2))%R) as [N HN].
repeat apply Rmult_gt_0_compat; try fourier.
destruct (Hv ((Rabs M)*(/l×2))%R) as [N0 HN0].
∃ (N+N0)%nat; intros n Hn.
apply Rle_lt_trans with (-(l×/2)*(-(Rabs M)*(2×/l)))%R.
replace (-(l×/2)*(-(Rabs M)*(2×/l)))%R with (Rabs M)%R.
apply RRle_abs.
field.
apply Rlt_not_eq.
exact Hl.
replace ((Vn × Un)%Rseq n) with (Vn n × Un n)%R by reflexivity.
replace (Vn n × Un n)%R with (-Un n × -Vn n)%R by ring.
apply Rmult_le_0_lt_compat.
repeat apply Rmult_gt_0_compat; try fourier.
replace (- Rabs M × (2 × /l))%R with ( Rabs M × (- 2 × /l))%R by ring.
replace 0%R with (Rabs M × 0)%R by field.
apply Rmult_le_compat_l.
apply Rabs_pos.
apply Rlt_le.
rewrite Ropp_mult_distr_l_reverse, <- Ropp_mult_distr_r_reverse.
repeat apply Rmult_gt_0_compat; try fourier.
apply Ropp_0_gt_lt_contravar.
apply Rinv_lt_0_compat.
exact Hl.
apply Ropp_gt_lt_contravar.
replace (l × /2)%R with (l - (l × /2))%R by field.
apply Rminus_lt.
unfold Rminus.
rewrite Ropp_plus_distr, Ropp_involutive, <- Rplus_assoc.
replace 0 with (- (l × /2) + (l × /2))%R by ring.
apply Rplus_lt_compat_r.
apply Rle_lt_trans with (Rabs (Un n+ - l)).
apply RRle_abs.
apply HN; omega.
rewrite Ropp_mult_distr_l_reverse.
apply Ropp_gt_lt_contravar.
apply Rlt_gt.
rewrite (Rmult_comm 2 (/l)).
apply HN0; omega.
Qed.
Lemma Rseq_cv_neg_infty_plus_compat :
Rseq_cv_neg_infty Un → Rseq_cv_neg_infty Vn →
Rseq_cv_neg_infty (Un + Vn).
Proof.
intros Hu Hv M.
destruct (Hu (M / 2)%R) as [Nu HNu].
destruct (Hv (M / 2)%R) as [Nv HNv].
∃ (Max.max Nu Nv); intros n Hn.
unfold Rseq_plus.
replace M with (M / 2 + M / 2)%R by field.
apply Rplus_lt_compat.
apply HNu; eapply le_trans; [apply Max.le_max_l|eexact Hn].
apply HNv; eapply le_trans; [apply Max.le_max_r|eexact Hn].
Qed.
Lemma Rseq_cv_pos_infty_opp_compat : Rseq_cv_pos_infty Un → Rseq_cv_neg_infty (- Un).
Proof.
intros H M.
destruct (H (- M)%R) as [N HN].
∃ N; intros n Hn.
unfold Rseq_opp.
rewrite <- Ropp_involutive.
apply Ropp_gt_lt_contravar.
apply HN; assumption.
Qed.
Lemma Rseq_cv_neg_infty_opp_compat : Rseq_cv_neg_infty Un → Rseq_cv_pos_infty (- Un).
Proof.
intros H M.
destruct (H (- M)%R) as [N HN].
∃ N; intros n Hn.
unfold Rseq_opp.
pattern M; rewrite <- Ropp_involutive.
apply Ropp_lt_gt_contravar.
apply HN; assumption.
Qed.
Lemma Rseq_cv_pos_infty_inv_compat : Rseq_cv_pos_infty Un → Rseq_cv (/ Un) 0.
Proof.
intros H eps Heps.
destruct (H (/eps)%R) as [N HN].
∃ N; intros n Hn.
assert (Hpos : Un n > 0).
eapply Rlt_trans; [|apply HN; assumption].
apply Rinv_0_lt_compat; assumption.
unfold R_dist; unfold Rseq_inv.
replace (/Un n - 0)%R with (/ Un n)%R; [|field; auto with real].
rewrite <- Rinv_involutive; [|apply Rgt_not_eq; assumption].
rewrite Rabs_Rinv; [|auto with real].
apply Rinv_lt_contravar.
apply Rmult_gt_0_compat.
apply Rinv_0_lt_compat; assumption.
rewrite Rabs_right; [|left]; assumption.
rewrite Rabs_right; [apply HN|left]; assumption.
Qed.
Lemma Rseq_cv_pos_infty_div_compat : ∀ l,
Rseq_cv_pos_infty Un → Rseq_cv Vn l → Rseq_cv (Vn / Un) 0.
Proof.
intros l HU HV.
assert (H : Rseq_cv (Vn*(/Un)) 0).
rewrite <- Rmult_0_r with l.
apply Rseq_cv_mult_compat.
apply HV.
apply Rseq_cv_pos_infty_inv_compat; apply HU.
unfold Rseq_mult in H.
unfold Rseq_div, Rdiv.
apply H.
Qed.
Lemma Rseq_cv_neg_infty_inv_compat : Rseq_cv_neg_infty Un → Rseq_cv (/ Un) 0.
intros H eps Heps.
destruct (H (-/eps)%R) as [N HN].
∃ N; intros n Hn.
assert (Hpos : Un n < 0).
eapply Rlt_trans; [apply HN; assumption|].
apply Ropp_lt_gt_0_contravar; apply Rinv_0_lt_compat; assumption.
unfold R_dist; unfold Rseq_inv.
replace (/ Un n - 0)%R with (/ Un n)%R; [|field; auto with real].
rewrite <- Rinv_involutive; [|apply Rgt_not_eq; assumption].
rewrite Rabs_Rinv; [|auto with real].
apply Rinv_lt_contravar.
apply Rmult_gt_0_compat.
apply Rinv_0_lt_compat; assumption.
apply Rabs_pos_lt; apply Rlt_not_eq; assumption.
rewrite Rabs_left; [|assumption].
pattern (/ eps)%R; rewrite <- Ropp_involutive.
apply Ropp_gt_lt_contravar.
apply HN; assumption.
Qed.
Lemma Rseq_cv_neg_infty_div_compat : ∀ l,
Rseq_cv_neg_infty Un → Rseq_cv Vn l → Rseq_cv (Vn / Un) 0.
Proof.
intros l HU HV.
assert (H : Rseq_cv (Vn*(/Un)) 0).
rewrite <- Rmult_0_r with l.
apply Rseq_cv_mult_compat.
apply HV.
apply Rseq_cv_neg_infty_inv_compat; apply HU.
unfold Rseq_mult in H.
unfold Rseq_div, Rdiv.
apply H.
Qed.
Lemma Rseq_cv_0_inv_compat :
Rseq_cv Un 0 → Rseq_neq_0 Un →
Rseq_cv_pos_infty (|/ Un|).
Proof.
intros Hcv He M.
pose (Mp := Rmax 1 M).
assert (Hp : Mp > 0).
eapply Rlt_le_trans; [apply Rlt_0_1|apply RmaxLess1].
destruct (Hcv (/ Mp)%R) as [N HN].
apply Rinv_0_lt_compat; assumption.
∃ N; intros n Hn.
apply Rle_lt_trans with Mp; [apply RmaxLess2|].
pattern Mp; rewrite <- Rinv_involutive; [|auto with real].
assert (Hd : Un n ≠ 0).
apply He.
unfold Rseq_abs, Rseq_inv.
rewrite Rabs_Rinv; [|assumption].
apply Rinv_lt_contravar.
apply Rmult_lt_0_compat; [|auto with real].
apply Rabs_pos_lt; assumption.
replace (Un n) with (Un n - 0)%R by field.
apply HN; assumption.
Qed.
Lemma Rseq_cv_abs_pos_infty : Rseq_cv_pos_infty Un → Rseq_cv_pos_infty (|Un|).
Proof.
intros HU M.
destruct (HU (Rabs M)) as [N HN].
∃ N.
intros n Hn.
apply Rle_lt_trans with (Rabs M).
apply RRle_abs.
apply Rlt_le_trans with (Un n).
apply (HN _ Hn).
apply RRle_abs.
Qed.
Lemma Rseq_cv_abs_neg_infty : Rseq_cv_neg_infty Un → Rseq_cv_pos_infty (|Un|).
Proof.
intros HU M.
assert (H : Rseq_cv_pos_infty (-Un)).
apply Rseq_cv_neg_infty_opp_compat.
apply HU.
destruct (H (Rabs M)) as [N HN].
∃ N.
intros n Hn.
apply Rle_lt_trans with (Rabs M).
apply RRle_abs.
apply Rlt_le_trans with (- (Un n))%R.
apply (HN _ Hn).
unfold Rseq_abs.
rewrite <- Rabs_Ropp.
apply RRle_abs.
Qed.
End Rseq_cv_infty.
Section Rseq_cv_others.
Lemma Rseq_cv_unique : ∀ Un lu1 lu2, Rseq_cv Un lu1 → Rseq_cv Un lu2 → lu1 = lu2.
Proof.
intros Un lu1 lu2 H1 H2.
assert (H: ∀ eps, eps > 0 → Rabs (lu1 - lu2) ≤ eps).
intros eps Heps.
destruct (H1 (eps / 2)%R) as [N1 HN1]; [fourier|].
destruct (H2 (eps / 2)%R) as [N2 HN2]; [fourier|].
pose (N := Max.max N1 N2).
replace (lu1 - lu2)%R
with ((lu1 - Un N) + (Un N - lu2))%R by field.
replace eps with (eps / 2 + eps / 2)%R by field.
eapply Rle_trans; [apply Rabs_triang|].
apply Rplus_le_compat.
left; rewrite Rabs_minus_sym; apply HN1; apply Max.le_max_l.
left; apply HN2; apply Max.le_max_r.
apply Rle_antisym; apply le_epsilon;
intros eps Heps; apply H in Heps;
unfold Rabs in Heps; destruct Rcase_abs; fourier.
Qed.
Lemma Rseq_cv_Rseq_cv_pos_infty_incompat : ∀ An l,
Rseq_cv An l → Rseq_cv_pos_infty An → False.
Proof.
intros An l Hl Hinfty ; destruct (Hl _ Rlt_0_1) as [M HM] ;
destruct (Hinfty (Rabs l + 1)%R) as [N HN] ;
apply (Rlt_irrefl (An (max M N))) ; transitivity (Rabs l + 1)%R.
rewrite <- (Rabs_right (An _)).
apply Rminus_lt_compat_l_rev, Rle_lt_trans with (R_dist (An (max M N)) l).
apply Rabs_triang_inv.
apply HM, le_max_l.
apply Rle_ge ; transitivity (Rabs l + 1)%R.
apply Rplus_le_le_0_compat ; [apply Rabs_pos | fourier].
left ; apply HN, le_max_r.
apply HN, le_max_r.
Qed.
Lemma Rseq_cv_Rseq_cv_neg_infty_incompat : ∀ An l,
Rseq_cv An l → Rseq_cv_neg_infty An → False.
Proof.
intros ; eapply Rseq_cv_Rseq_cv_pos_infty_incompat.
eapply Rseq_cv_opp_compat ; eassumption.
eapply Rseq_cv_neg_infty_opp_compat ; eassumption.
Qed.
Proof.
intros Un lu1 lu2 H1 H2.
assert (H: ∀ eps, eps > 0 → Rabs (lu1 - lu2) ≤ eps).
intros eps Heps.
destruct (H1 (eps / 2)%R) as [N1 HN1]; [fourier|].
destruct (H2 (eps / 2)%R) as [N2 HN2]; [fourier|].
pose (N := Max.max N1 N2).
replace (lu1 - lu2)%R
with ((lu1 - Un N) + (Un N - lu2))%R by field.
replace eps with (eps / 2 + eps / 2)%R by field.
eapply Rle_trans; [apply Rabs_triang|].
apply Rplus_le_compat.
left; rewrite Rabs_minus_sym; apply HN1; apply Max.le_max_l.
left; apply HN2; apply Max.le_max_r.
apply Rle_antisym; apply le_epsilon;
intros eps Heps; apply H in Heps;
unfold Rabs in Heps; destruct Rcase_abs; fourier.
Qed.
Lemma Rseq_cv_Rseq_cv_pos_infty_incompat : ∀ An l,
Rseq_cv An l → Rseq_cv_pos_infty An → False.
Proof.
intros An l Hl Hinfty ; destruct (Hl _ Rlt_0_1) as [M HM] ;
destruct (Hinfty (Rabs l + 1)%R) as [N HN] ;
apply (Rlt_irrefl (An (max M N))) ; transitivity (Rabs l + 1)%R.
rewrite <- (Rabs_right (An _)).
apply Rminus_lt_compat_l_rev, Rle_lt_trans with (R_dist (An (max M N)) l).
apply Rabs_triang_inv.
apply HM, le_max_l.
apply Rle_ge ; transitivity (Rabs l + 1)%R.
apply Rplus_le_le_0_compat ; [apply Rabs_pos | fourier].
left ; apply HN, le_max_r.
apply HN, le_max_r.
Qed.
Lemma Rseq_cv_Rseq_cv_neg_infty_incompat : ∀ An l,
Rseq_cv An l → Rseq_cv_neg_infty An → False.
Proof.
intros ; eapply Rseq_cv_Rseq_cv_pos_infty_incompat.
eapply Rseq_cv_opp_compat ; eassumption.
eapply Rseq_cv_neg_infty_opp_compat ; eassumption.
Qed.
Lemma Rseq_sandwich_theorem :
∀ Un Vn Wn l,
(Rseq_cv Un l) → (Rseq_cv Wn l) → (∀ n, Un n ≤ Vn n ≤ Wn n) → Rseq_cv Vn l.
Proof.
intros Un Vn Wn l Hu Hw H eps Heps.
destruct (Hu eps Heps) as [Nu HNu].
destruct (Hw eps Heps) as [Nw HNw].
∃ (Max.max Nu Nw); intros n Hn.
eapply Rle_lt_trans.
apply RmaxAbs; apply Rplus_le_compat_r; apply (H n).
unfold Rmax; destruct Rle_dec as [_|_].
apply HNw; eapply le_trans; [apply Max.le_max_r|eassumption].
apply HNu; eapply le_trans; [apply Max.le_max_l|eassumption].
Qed.
∀ Un Vn Wn l,
(Rseq_cv Un l) → (Rseq_cv Wn l) → (∀ n, Un n ≤ Vn n ≤ Wn n) → Rseq_cv Vn l.
Proof.
intros Un Vn Wn l Hu Hw H eps Heps.
destruct (Hu eps Heps) as [Nu HNu].
destruct (Hw eps Heps) as [Nw HNw].
∃ (Max.max Nu Nw); intros n Hn.
eapply Rle_lt_trans.
apply RmaxAbs; apply Rplus_le_compat_r; apply (H n).
unfold Rmax; destruct Rle_dec as [_|_].
apply HNw; eapply le_trans; [apply Max.le_max_r|eassumption].
apply HNu; eapply le_trans; [apply Max.le_max_l|eassumption].
Qed.
Lemma Rseq_positive_limit : ∀ (An : nat → R) (a : R),
(∀ n, 0 ≤ An n) →
Rseq_cv An a →
0 ≤ a.
Proof.
intros An a Hpos Ha.
apply Rnot_lt_le; intro Na.
destruct (Ha (Ropp (Rdiv a 2))) as [N HN]; [fourier | ].
pose proof (HN N (le_n N)).
generalize dependent H.
unfold R_dist, Rabs.
pose proof Hpos N as Hposn.
destruct (Rcase_abs (An N - a)); intro; fourier.
Qed.
Lemma Rseq_negative_limit : ∀ (An : nat → R) (a : R),
(∀ n, An n ≤ 0) → Rseq_cv An a → a ≤ 0.
Proof.
intros An a Hneg Ha ; apply Ropp_le_cancel ; rewrite Ropp_0 ;
eapply Rseq_positive_limit, Rseq_cv_opp_compat, Ha.
intro n ; apply Ropp_0_ge_le_contravar, Rle_ge, Hneg.
Qed.
(∀ n, 0 ≤ An n) →
Rseq_cv An a →
0 ≤ a.
Proof.
intros An a Hpos Ha.
apply Rnot_lt_le; intro Na.
destruct (Ha (Ropp (Rdiv a 2))) as [N HN]; [fourier | ].
pose proof (HN N (le_n N)).
generalize dependent H.
unfold R_dist, Rabs.
pose proof Hpos N as Hposn.
destruct (Rcase_abs (An N - a)); intro; fourier.
Qed.
Lemma Rseq_negative_limit : ∀ (An : nat → R) (a : R),
(∀ n, An n ≤ 0) → Rseq_cv An a → a ≤ 0.
Proof.
intros An a Hneg Ha ; apply Ropp_le_cancel ; rewrite Ropp_0 ;
eapply Rseq_positive_limit, Rseq_cv_opp_compat, Ha.
intro n ; apply Ropp_0_ge_le_contravar, Rle_ge, Hneg.
Qed.
Lemma Rseq_limit_comparison: ∀ (An Bn : nat → R) (a b : R),
(∀ n, An n ≤ Bn n) →
Rseq_cv An a → Rseq_cv Bn b →
a ≤ b.
Proof.
intros An Bn a b Hcomp Ha Hb.
assert (0 ≤ b - a).
apply Rseq_positive_limit with (fun n ⇒ (Bn n - An n)%R).
intro n; pose proof Hcomp n; fourier.
apply Rseq_cv_minus_compat; auto.
fourier.
Qed.
Lemma Rseq_interval_compat : ∀ (An : Rseq) (a lb ub : R),
(∀ n, interval lb ub (An n)) → Rseq_cv An a →
interval lb ub a.
Proof.
intros An a lb ub Hcomp Ha ; split ; eapply Rseq_limit_comparison.
intro ; apply (proj1 (Hcomp n)).
apply Rseq_constant_cv.
assumption.
intro n ; apply (proj2 (Hcomp n)).
assumption.
apply Rseq_constant_cv.
Qed.
End Rseq_cv_others.
(∀ n, An n ≤ Bn n) →
Rseq_cv An a → Rseq_cv Bn b →
a ≤ b.
Proof.
intros An Bn a b Hcomp Ha Hb.
assert (0 ≤ b - a).
apply Rseq_positive_limit with (fun n ⇒ (Bn n - An n)%R).
intro n; pose proof Hcomp n; fourier.
apply Rseq_cv_minus_compat; auto.
fourier.
Qed.
Lemma Rseq_interval_compat : ∀ (An : Rseq) (a lb ub : R),
(∀ n, interval lb ub (An n)) → Rseq_cv An a →
interval lb ub a.
Proof.
intros An a lb ub Hcomp Ha ; split ; eapply Rseq_limit_comparison.
intro ; apply (proj1 (Hcomp n)).
apply Rseq_constant_cv.
assumption.
intro n ; apply (proj2 (Hcomp n)).
assumption.
apply Rseq_constant_cv.
Qed.
End Rseq_cv_others.