Library Coqtail.Reals.Rsequence.Rsequence_ring
Require Import Nnat.
Require Import Arith.
Require Export Ring.
Require Import Rsequence_def.
Require Import Reals.
Require Import Setoid.
Open Scope Rseq_scope.
Add Morphism Rseq_plus with signature Rseq_eq ==> Rseq_eq ==> Rseq_eq as Rseq_plus_Rseq_eq_compat.
Proof.
unfold Rseq_eq, Rseq_plus.
intros Un Vn Huv Xn Yn Hxy n.
rewrite Huv.
rewrite Hxy.
reflexivity.
Qed.
Add Morphism Rseq_minus : Rseq_minus_Rseq_eq_compat.
Proof.
unfold Rseq_eq, Rseq_minus.
intros Un Vn Huv Xn Yn Hxy n.
rewrite Huv.
rewrite Hxy.
reflexivity.
Qed.
Add Morphism Rseq_mult with signature Rseq_eq ==> Rseq_eq ==> Rseq_eq as Rseq_mult_Rseq_eq_compat.
Proof.
unfold Rseq_eq, Rseq_mult.
intros Un Vn Huv Xn Yn Hxy n.
rewrite Huv.
rewrite Hxy.
reflexivity.
Qed.
Add Morphism Rseq_opp with signature Rseq_eq ==> Rseq_eq as Rseq_opp_Rseq_eq_compat.
Proof.
intros x y H i.
unfold Rseq_eq, Rseq_opp.
rewrite H.
trivial.
Qed.
Lemma Rseq_setoid_theory : Setoid_Theory Rseq Rseq_eq.
Proof.
constructor; unfold Rseq_eq.
unfold Reflexive; trivial.
unfold Symmetric; auto.
unfold Transitive; intros x y z H1 H2 n;
rewrite H1; rewrite H2; reflexivity.
Qed.
Lemma Rseq_ring_theory : @ring_theory Rseq (0%R) (1%R) Rseq_plus Rseq_mult Rseq_minus Rseq_opp Rseq_eq.
Proof.
constructor; unfold Rseq_plus, Rseq_mult, Rseq_minus, Rseq_eq, Rseq_constant, Rseq_opp;
intros; ring.
Qed.
Add Setoid Rseq Rseq_eq Rseq_setoid_theory as Rseq_eq_setoid.
Add Ring Rseq_Ring : Rseq_ring_theory(abstract).