Library Coqtail.Complex.CFsequence


Common definitions of real functions sequences.
Require Import Cbase.
Require Import Cfunctions.
Require Import Csequence.
Require Import Canalysis_def.

Delimit Scope CFseq_scope with Cseq_scope.

Open Local Scope C_scope.
Open Local Scope CFseq_scope.

Implicit Type n : nat.
Implicit Type fn gn : natCC.
Implicit Type f g : CC.

Morphism of functions on R -> R to sequences.


Definition CFseq_plus fn gn n := (fn n + gn n)%F.
Definition CFseq_mult fn gn n := (fn n × gn n)%F.
Definition CFseq_opp fn n := (fun xCopp (fn n x))%F.
Definition CFseq_inv fn n := (fun xCinv (fn n x))%F.

Infix "+" := CFseq_plus : CFseq_scope.
Infix "×" := CFseq_mult : CFseq_scope.
Notation "- u" := (CFseq_opp u) : CFseq_scope.
Notation "/ u" := (CFseq_inv u) : CFseq_scope.

Definition CFseq_minus fn gn n := (fn n - gn n)%F.
Definition CFseq_div fn gn n := (fn n / gn n)%F.

Infix "-" := CFseq_minus : CFseq_scope.
Infix "/" := CFseq_div : CFseq_scope.

Convergence of functions sequences.


Definition CFseq_cv fn f := x, Cseq_cv (fun nfn n x) (f x).
Definition CFseq_cv_boule fn f (c : C) (r : posreal) := x, Boule c r xCseq_cv (fun nfn n x) (f x).

Definition CFseq_cvu fn f (x : C) (r : posreal) := eps : R, 0 < eps
         N : nat, n (y : C), (N n)%natBoule x r y
        C_dist (fn n y) (f y) < eps.

Definition CFpartial_sum (fn : natC) N := sum_f_C0 fn N.