Library Coqtail.Complex.Canalysis_diff
Require Import Canalysis_def.
Require Import Cprop_base.
Require Import Cnorm.
Require Import Ctacfield.
Open Scope C_scope.
Lemma uniqueness_step1 : ∀ f x v l1 l2, v ≠ 0 →
limit1_in (fun u ⇒ (f (x + u) - f x) / u) (fun u ⇒ u ≠ 0 ∧ ∃ h:R, h × u = v) l1 0 →
limit1_in (fun u ⇒ (f (x + u) - f x) / u) (fun u ⇒ u ≠ 0 ∧ ∃ h:R, h × u = v) l2 0 →
l1 = l2.
Proof.
intros f x v l1 l2 v_neq Hl1 Hl2 ;
apply (single_limit (fun u ⇒ (f (x + u) - f x) / u) (fun u ⇒ u ≠ 0 ∧ ∃ h:R, h × u = v) l1 l2 0);
try assumption.
intros alp alp_pos.
case (Rlt_le_dec (Cnorm v) alp) ; intro alp_bd.
∃ v ; repeat split.
assumption.
∃ 1%R ; CusingR_f.
unfold C_dist ; rewrite Cminus_0_r ; assumption.
∃ (v × ((alp / 2) / Cnorm v)) ; repeat split.
unfold Cdiv ; repeat apply Cmult_integral_contrapositive_currified.
assumption.
apply IRC_neq_0_compat ; apply Rgt_not_eq ; assumption.
apply Cinv_neq_0_compat ; apply IRC_neq_0_compat ;
apply Rgt_not_eq ; fourier.
apply Cinv_neq_0_compat ; apply IRC_neq_0_compat ;
apply Cnorm_no_R0 ; assumption.
∃ (2 × Cnorm v / alp)%R.
unfold Rdiv, Cdiv.
CusingR_f ; try split.
apply Cnorm_no_R0 ; assumption.
apply Rgt_not_eq ; assumption.
apply Cnorm_no_R0 ; assumption.
apply Rgt_not_eq ; assumption.
unfold C_dist ; rewrite Cminus_0_r.
unfold Cdiv ; rewrite Cmult_comm ; repeat rewrite Cnorm_Cmult.
repeat rewrite Cnorm_inv.
rewrite Cnorm_invol, Rmult_assoc, Rinv_l.
rewrite Rmult_1_r ; rewrite <- Cnorm_inv.
rewrite <- Cnorm_Cmult.
replace (alp × / 2)%C with (IRC (alp / 2)%R).
rewrite Cnorm_IRC_Rabs, Rabs_right.
fourier.
fourier.
clear ; CusingR_f.
apply IRC_neq_0_compat ; apply Rgt_not_eq ; fourier.
apply Cnorm_no_R0 ; assumption.
apply IRC_neq_0_compat ; apply Cnorm_no_R0 ; assumption.
apply IRC_neq_0_compat ; apply Rgt_not_eq ; fourier.
Qed.
Lemma uniqueness_step2 : ∀ f x v l, v ≠ 0 →
differentiable_pt_lim f x v l →
limit1_in (fun u ⇒ (f (x + u) - f x) / u) (fun u ⇒ u ≠ 0 ∧ ∃ h:R, h × u = v) l 0.
Proof.
unfold derivable_pt_lim, limit1_in, limit_in.
intros f x v l v_neq Hf_deriv eps eps_pos ; destruct (Hf_deriv v_neq eps eps_pos) as
([alpha alpha_pos], Halpha) ; clear Hf_deriv ; ∃ (alpha × Cnorm v)%R ; split.
apply Rmult_lt_0_compat ; [| apply Cnorm_pos_lt] ; assumption.
intros h [[h_neq [u h_rew]] Hh] ; simpl in × ; unfold C_dist in ×.
assert (u_neq : u ≠ 0%R).
intro Hf ; apply v_neq ; rewrite <- h_rew, Hf ; CusingR_f.
replace h with ((/u)%R × v).
apply (Halpha (/u)%R).
apply Rinv_neq_0_compat ; assumption.
rewrite Cminus_0_r in Hh.
replace (Rabs (/u))%R with (Cnorm h / Cnorm v)%R.
apply Rlt_le_trans with (alpha × Cnorm v × / Cnorm v)%R.
unfold Rdiv ; apply Rmult_lt_compat_r.
apply Rinv_0_lt_compat ; apply Cnorm_pos_lt ; assumption.
assumption.
right ; field ; apply Cnorm_no_R0 ; assumption.
rewrite <- h_rew.
unfold Rdiv ; rewrite <- Cnorm_inv.
rewrite <- Cnorm_Cmult.
replace (h × / (u × h)) with (IRC (/ u)).
apply Cnorm_IRC_Rabs.
rewrite Cinv_mult_distr, Cmult_comm, Cmult_assoc, Cinv_l, Cmult_1_r.
clear -u_neq ; CusingR ; field ; assumption.
assumption.
apply IRC_neq_0_compat ; assumption.
assumption.
apply Cmult_integral_contrapositive_currified ; [apply IRC_neq_0_compat |] ;
assumption.
rewrite <- h_rew.
replace (IRC (/ u)) with (/ u).
field ; apply IRC_neq_0_compat ; assumption.
CusingR_f ; assumption.
Qed.
Lemma uniqueness_step3 : ∀ f x v l,
limit1_in (fun u ⇒ (f (x + u) - f x) / u) (fun u ⇒ u ≠ 0 ∧ ∃ h:R, h × u = v) l 0 →
differentiable_pt_lim f x v l.
Proof.
unfold limit1_in, derivable_pt_lim, limit_in, C_dist ; simpl ; unfold C_dist ;
intros f x v l Hf_lim v_neq eps eps_pos ; destruct (Hf_lim eps eps_pos) as
(alpha, [alpha_pos Halpha]) ; clear Hf_lim.
assert (alpha'_pos : 0 < alpha / Cnorm v).
unfold Rdiv ; apply Rlt_mult_inv_pos ; [| apply Cnorm_pos_lt] ;
assumption.
∃ (mkposreal (alpha / Cnorm v)%R alpha'_pos) ; intros h h_neq Hyp ;
apply Halpha ; rewrite Cminus_0_r ; repeat split.
apply Cmult_integral_contrapositive_currified ; [apply IRC_neq_0_compat |] ;
assumption.
∃ (/h)%R.
rewrite <- Cmult_assoc.
replace ((/ h)%R × h) with 1.
apply Cmult_1_l.
CusingR_f ; assumption.
rewrite Cnorm_Cmult ; apply Rlt_le_trans with (alpha / Cnorm v × Cnorm v)%R.
apply Rmult_lt_compat_r.
apply Cnorm_pos_lt ; assumption.
rewrite Cnorm_IRC_Rabs ; apply Hyp.
right ; field ; apply Cnorm_no_R0 ; assumption.
Qed.
Lemma uniqueness_limite : ∀ f x v l1 l2, v ≠ 0 →
differentiable_pt_lim f x v l1 → differentiable_pt_lim f x v l2 → l1 = l2.
Proof.
intros f x v l1 l2 v_neq Hf_deriv1 Hf_deriv2 ;
assert (H1 := uniqueness_step2 _ _ _ _ v_neq Hf_deriv1) ;
assert (H2 := uniqueness_step2 _ _ _ _ v_neq Hf_deriv2) ;
apply uniqueness_step1 with f x v ; assumption.
Qed.
Lemma differential_pt_eq : ∀ f x v l (pr:differentiable_pt f x v), v ≠ 0 →
(differential_pt f x v pr = l ↔ differentiable_pt_lim f x v l).
Proof.
intros f x v l pr v_neq ; split ; intro Hf_deriv.
assert (H := proj2_sig pr) ; unfold derive_pt in Hf_deriv ;
rewrite Hf_deriv in H ; assumption.
assert (H := proj2_sig pr) ; unfold derivable_pt_abs in H.
assert (H' := uniqueness_limite _ _ _ _ (proj1_sig pr) v_neq Hf_deriv H) ;
symmetry ; assumption.
Qed.
Lemma differential_pt_eq_0 : ∀ f x v l (pr:differentiable_pt f x v),
v ≠ 0 → differentiable_pt_lim f x v l → differential_pt f x v pr = l.
Proof.
intros f x v l pr v_neq ; destruct (differential_pt_eq f x v l pr) ; assumption.
Qed.
Lemma differential_pt_eq_1 : ∀ f x v l (pr:differentiable_pt f x v),
v ≠ 0 → differential_pt f x v pr = l → differentiable_pt_lim f x v l.
Proof.
intros f x v l pr v_neq ; destruct (differential_pt_eq f x v l pr) ; assumption.
Qed.
Lemma differentiable_continuous_along_axis : ∀ f x v,
differentiable_pt f x v → continuity_along_axis_pt f v x.
Proof.
intros f x v f_diff.
destruct (Ceq_dec v 0) as [v_eq | v_neq] ; intros eps eps_pos.
∃ (mkposreal R1 Rlt_0_1) ;
intros h h_ub ; simpl ; unfold C_dist, Cminus ; rewrite v_eq, Cmult_0_r,
Cadd_0_r, Cadd_opp_r, Cnorm_C0 ; assumption.
destruct f_diff as (l, f_diff) ; destruct (Ceq_dec l 0) as [l_eq | l_neq].
assert (eps_2_pos : eps / 2 > 0) by fourier ;
destruct (f_diff v_neq (eps / 2)%R eps_2_pos) as ([alpha alpha_pos], Halpha).
assert (delta_pos : 0 < Rmin (/ (2 × Cnorm v)) alpha).
apply Rmin_pos.
rewrite Rinv_mult_distr.
apply Rlt_mult_inv_pos ; [fourier | apply Cnorm_pos_lt ; assumption].
apply Rgt_not_eq ; fourier.
apply Rgt_not_eq ; apply Cnorm_pos_lt ; assumption.
assumption.
∃ (mkposreal (Rmin (/(2 × Cnorm v)) alpha) delta_pos).
intros h h_ub ; simpl ; unfold C_dist ; destruct (Ceq_dec h 0) as [h_eq | h_neq].
rewrite h_eq, Cmult_0_l, Cadd_0_r,
Cminus_diag_eq ; [| reflexivity] ; rewrite Cnorm_C0 ; assumption.
apply Rlt_trans with (Cnorm (h × v) ×eps)%R.
apply Rle_lt_trans with (Cnorm (f (x + h × v)%C - f x) × (/ Cnorm (h × v) × Cnorm (h × v)))%R.
right ; field ; apply Rgt_not_eq ; apply Cnorm_pos_lt ;
apply Cmult_integral_contrapositive_currified ; assumption.
unfold Rdiv ; rewrite <- Rmult_assoc ; rewrite <- Cnorm_inv, <- Cnorm_Cmult.
rewrite Rmult_comm ; apply Rmult_lt_compat_l.
apply Cnorm_pos_lt ; apply Cmult_integral_contrapositive_currified ; assumption.
replace ((f (x + h × v) - f x) × / (h × v)) with ((f (x + h × v) - f x) / (h ×v) - l).
apply Rlt_trans with (eps / 2)%R.
apply Halpha.
intro Hf ; apply h_neq ; rewrite Hf ; intuition.
subst ; apply Rlt_le_trans with (Rmin (/(2× Cnorm v)) alpha) ; [apply h_ub | apply Rmin_r].
fourier.
rewrite l_eq ; field ; split ; assumption.
apply Cmult_integral_contrapositive_currified ; assumption.
rewrite Cnorm_Cmult.
apply Rlt_trans with ((Rmin (/(2 × Cnorm v)) alpha) × Cnorm v × eps)%R.
repeat apply Rmult_lt_compat_r ; [| apply Cnorm_pos_lt | rewrite Cnorm_IRC_Rabs] ;
assumption.
apply Rle_lt_trans with (eps / 2)%R.
unfold Rdiv ; rewrite Rmult_comm ; apply Rmult_le_compat_l ; intuition ;
apply Rle_trans with (/(2×Cnorm v) × Cnorm v)%R.
apply Rmult_le_compat_r ; [apply Cnorm_pos | apply Rmin_l].
right ; field.
apply Rgt_not_eq ; apply Cnorm_pos_lt ; assumption.
fourier.
assert (eps_2_pos : eps / 2 > 0) by fourier ;
destruct (f_diff v_neq (eps / 2)%R eps_2_pos) as ([alpha alpha_pos], Halpha).
pose (delta1 := Rmin (eps / (2 × Cnorm l)) (Rmin (1/2) alpha)).
assert (delta1_pos : 0 < delta1).
unfold delta1 ; repeat apply Rmin_pos.
apply Rlt_mult_inv_pos ; [| apply Rmult_lt_0_compat] ;
[| fourier | apply Cnorm_pos_lt] ; assumption.
fourier.
assumption.
pose (delta := Rmin (delta1 / Cnorm v)%R delta1).
assert (delta_pos : 0 < delta).
unfold delta ; apply Rmin_pos.
unfold Rdiv ; apply Rlt_mult_inv_pos ; [| apply Cnorm_pos_lt] ; assumption.
assumption.
∃ (mkposreal delta delta_pos) ; intros h h_ub ; simpl ; unfold C_dist, Cminus.
destruct (Ceq_dec h 0) as [h_eq | h_neq].
rewrite h_eq, Cmult_0_l, Cadd_0_r, Cadd_opp_r, Cnorm_C0 ; assumption.
apply Rlt_trans with (Cnorm (h × v) × eps + Cnorm (h × v) × Cnorm l )%R.
apply Rle_lt_trans with (Cnorm (f (x + h × v)%C - f x) × (/ Cnorm (h × v) × Cnorm (h × v)))%R.
right ; rewrite Rinv_l, Rmult_1_r ; [reflexivity |].
apply Cnorm_no_R0 ; apply Cmult_integral_contrapositive_currified ;
assumption.
unfold Rdiv ; rewrite <- Rmult_assoc ; rewrite <- Cnorm_inv, <- Cnorm_Cmult.
apply Rle_lt_trans with ((Cnorm ((f (x + h × v)%C - f x) × / (h × v)) + (- Cnorm l + Cnorm l)) × Cnorm (h×v))%R.
right ; field.
repeat rewrite Rmult_plus_distr_r.
replace (Cnorm l × Cnorm (h × v))%R with (Cnorm (h ×v) × Cnorm l)%R
by (apply Rmult_comm).
rewrite <- Rplus_assoc ; apply Rplus_lt_compat_r.
apply Rle_lt_trans with (Cnorm ((f (x +h × v)%C - f x) / (h × v) - l)× Cnorm (h × v))%R.
rewrite <- Rmult_plus_distr_r ; apply Rmult_le_compat_r ;
[apply Cnorm_pos | apply Cnorm_triang_rev_l].
rewrite Rmult_comm ; apply Rmult_lt_compat_l.
apply Cnorm_pos_lt ; apply Cmult_integral_contrapositive_currified ; assumption.
apply Rlt_trans with (eps /2)%R ; [apply Halpha | fourier].
intro Hf ; apply h_neq ; rewrite Hf ; intuition.
apply Rlt_le_trans with delta ; [apply h_ub |].
apply Rle_trans with delta1 ; [apply Rmin_r |].
apply Rle_trans with (Rmin (1/2) alpha) ; apply Rmin_r.
apply Cmult_integral_contrapositive_currified ; assumption.
apply Rlt_trans with (eps / 2 + Cnorm (h×v) × Cnorm l)%R.
apply Rplus_lt_compat_r.
unfold Rdiv ; rewrite Rmult_comm ; apply Rmult_lt_compat_l ;
[assumption |].
apply Rlt_le_trans with delta1.
unfold delta1.
apply Rlt_le_trans with (delta × Cnorm v)%R.
rewrite Cnorm_Cmult ; apply Rmult_lt_compat_r ; [apply Cnorm_pos_lt ; assumption |] ;
rewrite Cnorm_IRC_Rabs ; assumption.
apply Rle_trans with (delta1 / Cnorm v × Cnorm v)%R.
apply Rmult_le_compat_r ; [apply Cnorm_pos | apply Rmin_l].
unfold Rdiv ; rewrite Rmult_assoc, Rinv_l, Rmult_1_r.
right ; reflexivity.
apply Cnorm_no_R0 ; assumption.
apply Rle_trans with (Rmin (1/2) alpha) ; [apply Rmin_r | apply Rle_trans with (1/2)%R ;
[apply Rmin_l | right ; field]].
apply Rlt_le_trans with (eps / 2 + eps / 2)%R ; [apply Rplus_lt_compat_l | right ; field].
replace (eps / 2)%R with ((eps / (2 × Cnorm l)) × Cnorm l)%R
by (field ; apply Cnorm_no_R0 ; assumption).
apply Rmult_lt_compat_r.
apply Cnorm_pos_lt ; assumption.
apply Rlt_le_trans with (Rmin (eps / (2 × Cnorm l)) (Rmin (1 / 2) alpha)).
apply Rlt_le_trans with (delta × Cnorm v)%R.
rewrite Cnorm_Cmult ; apply Rmult_lt_compat_r ; [apply Cnorm_pos_lt ; assumption |] ;
rewrite Cnorm_IRC_Rabs ; assumption.
apply Rle_trans with (delta1 / Cnorm v × Cnorm v)%R.
apply Rmult_le_compat_r ; [apply Cnorm_pos | apply Rmin_l].
unfold Rdiv ; rewrite Rmult_assoc, Rinv_l, Rmult_1_r.
right ; reflexivity.
apply Cnorm_no_R0 ; assumption.
apply Rmin_l.
Qed.
Lemma differentiable_pt_lim_plus : ∀ f1 f2 x v l1 l2, v ≠ 0 →
differentiable_pt_lim f1 x v l1 → differentiable_pt_lim f2 x v l2 →
differentiable_pt_lim (f1 + f2) x v (l1 + l2).
Proof.
intros f1 f2 x v l1 l2 v_neq H H0.
apply uniqueness_step3.
assert (H1 := uniqueness_step2 _ _ _ _ v_neq H).
assert (H2 := uniqueness_step2 _ _ _ _ v_neq H0).
unfold plus_fct in |- ×.
cut
(∀ h,
(f1 (x + h) + f2 (x + h) - (f1 x + f2 x)) / h =
(f1 (x + h) - f1 x) / h + (f2 (x + h) - f2 x) / h).
intro H3 ; generalize
(limit_plus (fun h' ⇒ (f1 (x + h') - f1 x) / h')
(fun h' ⇒ (f2 (x + h') - f2 x) / h')
(fun u ⇒ u ≠ 0 ∧ (∃ h : R, h × u = v)) l1 l2 0 H1 H2).
intros H4 eps eps_pos.
elim (H4 eps eps_pos); intros x0 Hx0.
∃ x0.
destruct Hx0 as [x0_pos Hx0'].
split.
assumption.
intros; rewrite H3; apply Hx0'; assumption.
intro; unfold Cdiv ; ring.
Qed.
Lemma differentiable_pt_lim_opp : ∀ f x v l,
v ≠ 0 → differentiable_pt_lim f x v l →
differentiable_pt_lim (- f) x v (- l).
Proof.
intros f x v l v_neq H.
apply uniqueness_step3.
assert (H1 := uniqueness_step2 _ _ _ _ v_neq H).
unfold opp_fct in |- × ;
cut (∀ h, (- f (x + h) - - f x) / h = - ((f (x + h) - f x) / h)).
intro.
generalize
(limit_opp (fun h ⇒ (f (x + h) - f x) / h)
(fun u ⇒ u ≠ 0 ∧ (∃ h : R, h × u = v)) l 0 H1).
unfold limit1_in in |- *; unfold limit_in in |- *; unfold dist in |- *;
simpl in |- *; unfold R_dist in |- *; intros.
elim (H2 eps H3); intros.
∃ x0.
elim H4; intros.
split.
assumption.
intros; rewrite H0; apply H6; assumption.
intro; unfold Cdiv in |- *; ring.
Qed.
Lemma differentiable_pt_lim_minus : ∀ f1 f2 x v l1 l2, v ≠ 0 →
differentiable_pt_lim f1 x v l1 → differentiable_pt_lim f2 x v l2 →
differentiable_pt_lim (f1 - f2) x v (l1 - l2).
Proof.
intros f1 f2 x v l1 l2 v_neq H H0.
apply uniqueness_step3.
assert (H1 := uniqueness_step2 _ _ _ _ v_neq H).
assert (H2 := uniqueness_step2 _ _ _ _ v_neq H0).
unfold minus_fct in |- ×.
cut
(∀ h,
(f1 (x + h) - f1 x) / h - (f2 (x + h) - f2 x) / h =
(f1 (x + h) - f2 (x + h) - (f1 x - f2 x)) / h).
intro.
generalize
(limit_minus (fun h' ⇒ (f1 (x + h') - f1 x) / h')
(fun h' ⇒ (f2 (x + h') - f2 x) / h')
(fun u ⇒ u ≠ 0 ∧ (∃ h : R, h × u = v)) l1 l2 0 H1 H2).
unfold limit1_in in |- *; unfold limit_in in |- *; unfold dist in |- *;
simpl in |- *; unfold R_dist in |- *; intros.
elim (H4 eps H5); intros.
∃ x0.
elim H6; intros.
split.
assumption.
intros; rewrite <- H3; apply H8; assumption.
intro; unfold Cdiv in |- *; ring.
Qed.
Lemma differentiable_pt_lim_const : ∀ a x v, differentiable_pt_lim (fct_cte a) x v 0.
Proof.
intros; unfold fct_cte, derivable_pt_lim in |- ×.
intros; ∃ (mkposreal 1 Rlt_0_1); intros; unfold Cminus in |- *;
rewrite Cadd_opp_r; unfold Cdiv in |- × ; rewrite Cmult_0_l;
rewrite Cadd_opp_r; rewrite Cnorm_C0; assumption.
Qed.
Lemma differentiable_pt_lim_mult : ∀ f1 f2 x v l1 l2,
differentiable_pt_lim f1 x v l1 →
differentiable_pt_lim f2 x v l2 →
differentiable_pt_lim (f1 × f2) x v (l1 × f2 x + f1 x × l2).
Proof.
intros f1 f2 x v l1 l2 Hf1 Hf2 v_neq eps eps_pos.
assert (Hrew : ∀ h, h ≠ 0 → ((f1 × f2)%F (x + h × v) - (f1 × f2)%F x) / (h × v) -
(l1 × f2 x + f1 x × l2) = ((f1 (x + h × v) - f1 x) / (h × v)) × f2 (x + h × v)
- l1 × f2 (x + h × v) + l1 × f2 (x + h × v) - l1 × f2 x + (f1 x) × (f2 (x + h × v) - f2 x) / (h × v) - (f1 x) × l2).
clear - v_neq.
intros h h_neq.
unfold Cminus, Cdiv, mult_fct ; ring.
assert (Main : ∀ h : C, h ≠ 0 →((f1 × f2)%F (x + h × v) - (f1 × f2)%F x) / (h × v) -
(l1 × f2 x + f1 x × l2) = ((f1 (x + h × v) - f1 x) / (h × v) - l1) × f2 x +
((f1 (x + h × v) - f1 x) / (h × v) - l1) × (f2 (x + h×v) - f2 x) +
l1 × (f2 (x + h × v) - f2 x) + f1 x × ((f2 (x + h × v) - f2 x) / (h × v) - l2)).
clear - v_neq Hrew.
intros h h_neq.
unfold Cminus, Cdiv, mult_fct ; ring.
clear Hrew.
destruct (Ceq_dec l1 0) as [l1_eq | l1_neq].
destruct (Ceq_dec (f1 x) 0) as [f1_eq | f1_neq].
destruct (Ceq_dec (f2 x) 0) as [f2_eq | f2_neq].
assert (Hf2' : differentiable_pt f2 x v).
∃ l2 ; apply Hf2.
destruct (Rle_dec 1 eps) as [eps_lb | eps_ub].
destruct (Hf1 v_neq (Rmin 1 eps)) as [delta1 Hdelta1] ; [apply Rmin_pos ; fourier |].
destruct (differentiable_continuous_along_axis f2 x v Hf2' (Rmin 1 eps)%R) as
[delta2 Hdelta2] ; [apply Rmin_pos ; fourier |].
pose (delta := Rmin delta1 delta2) ; assert (delta_pos : 0 < delta) by
(apply Rmin_pos ; [apply delta1 | apply delta2]).
∃ (mkposreal delta delta_pos) ; intros h h_neq h_ub.
rewrite Main ; clear Main ; repeat rewrite l1_eq, f1_eq, f2_eq in × ;
repeat rewrite Cmult_0_r ; repeat rewrite Cmult_0_l ;
repeat rewrite Cadd_0_l ; repeat rewrite Cadd_0_r.
apply Rlt_le_trans with 1%R ; [| assumption].
rewrite Cnorm_Cmult ; apply Rle_lt_trans with (Cnorm (f2 (x + h × v) - 0)).
rewrite <- Rmult_1_l ; apply Rmult_le_compat_r ; [apply Cnorm_pos |].
apply Rle_trans with (Rmin 1 eps) ; [left ; apply Hdelta1 | apply Rmin_l].
assumption.
apply Rlt_le_trans with delta ; [apply h_ub | apply Rmin_l].
apply Rlt_le_trans with (Rmin 1 eps) ; [simpl in Hdelta2 ; unfold C_dist in Hdelta2 ;
apply Hdelta2 | apply Rmin_l].
apply Rlt_le_trans with delta ; [apply h_ub | apply Rmin_r].
apply IRC_neq_0_compat ; assumption.
assert (eps_lt_1 := Rnot_le_lt _ _ eps_ub) ; clear eps_ub.
assert (eps_2_lt_eps : eps × eps < eps).
rewrite <- Rmult_1_r ; apply Rmult_lt_compat_l ; assumption.
destruct (Hf1 v_neq eps eps_pos) as [delta1 Hdelta1].
destruct (differentiable_continuous_along_axis f2 x v Hf2' eps eps_pos) as
[delta2 Hdelta2].
pose (delta := Rmin delta1 delta2) ; assert (delta_pos : 0 < delta) by
(apply Rmin_pos ; [apply delta1 | apply delta2]).
∃ (mkposreal delta delta_pos) ; intros h h_neq h_ub ;
rewrite Main ; [| apply IRC_neq_0_compat ; assumption] ;
clear Main ; repeat rewrite l1_eq, f1_eq, f2_eq in × ;
repeat rewrite Cmult_0_r ; repeat rewrite Cmult_0_l ;
repeat rewrite Cadd_0_l ; repeat rewrite Cadd_0_r.
rewrite Cnorm_Cmult ; apply Rlt_trans with (eps × eps)%R ;
[| assumption] ; clear eps_lt_1 eps_2_lt_eps.
apply Rle_lt_trans with (eps × Cnorm (f2 (x + h × v)%C - C0))%R.
apply Rmult_le_compat_r ; [apply Cnorm_pos |].
left ; apply Hdelta1.
assumption.
apply Rlt_le_trans with delta ; [apply h_ub | apply Rmin_l].
apply Rmult_lt_compat_l ; [assumption |].
simpl in Hdelta2 ; unfold C_dist in Hdelta2 ; apply Hdelta2.
apply Rlt_le_trans with delta ; [apply h_ub | apply Rmin_r].
destruct (Hf1 v_neq (Rmin (eps/2)%R ((eps/2) / Cnorm (f2 x)))) as [delta1 Hdelta1].
apply Rmin_pos ; [fourier |].
apply Rmult_lt_0_compat ; [fourier | apply Rinv_0_lt_compat ; apply Cnorm_pos_lt] ;
assumption.
assert (Hf2' : differentiable_pt f2 x v).
∃ l2 ; apply Hf2.
destruct (differentiable_continuous_along_axis f2 x v Hf2' R1 Rlt_0_1)
as [delta2 Hdelta2].
pose (delta := Rmin delta1 delta2) ; assert (delta_pos : 0 < delta) by
(apply Rmin_pos ; [apply delta1 | apply delta2]).
∃ (mkposreal delta delta_pos) ; intros h h_neq h_ub ;
rewrite Main ; [| apply IRC_neq_0_compat ; assumption] ;
clear Main ; repeat rewrite l1_eq, f1_eq in × ;
repeat rewrite Cmult_0_r ; repeat rewrite Cmult_0_l ;
repeat rewrite Cadd_0_l ; repeat rewrite Cadd_0_r ;
repeat rewrite Cminus_0_r in ×.
apply Rle_lt_trans with (Cnorm (f1 (x + h × v)%C / (h × v) × f2 x) +
Cnorm (f1 (x + h × v)%C / (h × v) × (f2 (x + h × v)%C - f2 x)))%R.
apply Cnorm_triang.
apply Rlt_trans with (Cnorm (f1 (x + h × v)%C / (h × v) × f2 x) + eps / 2)%R.
apply Rplus_lt_compat_l.
rewrite Cnorm_Cmult.
apply Rle_lt_trans with (Cnorm (f1 (x + h × v)%C / (h × v)))%R.
rewrite <- Rmult_1_r ; apply Rmult_le_compat_l ; [apply Cnorm_pos |].
left ; simpl in Hdelta2 ; unfold C_dist in Hdelta2 ; apply Hdelta2.
apply Rlt_le_trans with delta ; [apply h_ub | apply Rmin_r].
apply Rlt_le_trans with (Rmin (eps / 2) (eps / 2 / Cnorm (f2 x))) ; [| apply Rmin_l].
apply Rle_lt_trans with (Cnorm ((f1 (x + h × v) - 0) / (h × v) - 0)).
right ; repeat rewrite Cminus_0_r ; reflexivity.
apply Hdelta1.
assumption.
apply Rlt_le_trans with delta ; [apply h_ub | apply Rmin_l].
apply Rlt_le_trans with (eps / 2 + eps / 2)%R ; [| right ; field].
apply Rplus_lt_compat_r.
apply Rlt_le_trans with ((eps / 2 / Cnorm (f2 x)) × Cnorm (f2 x))%R.
rewrite Cnorm_Cmult ; apply Rmult_lt_compat_r ; [apply Cnorm_pos_lt ; assumption |].
apply Rlt_le_trans with (Rmin (eps / 2) (eps / 2 / Cnorm (f2 x))) ; [| apply Rmin_r].
apply Rle_lt_trans with (Cnorm ((f1 (x + h × v)%C - 0) / (h × v) - 0))%R ;
[right ; repeat rewrite Cminus_0_r ; reflexivity |] ; apply Hdelta1.
assumption.
apply Rlt_le_trans with delta ; [apply h_ub | apply Rmin_l].
right ; unfold Rdiv ; repeat rewrite Rmult_assoc ; rewrite Rinv_l.
ring.
apply Cnorm_no_R0 ; assumption.
destruct (Ceq_dec (f2 x) 0) as [f2_eq | f2_neq].
destruct (Hf1 v_neq (eps/2)%R) as [delta1 Hdelta1] ; [fourier |].
destruct (Hf2 v_neq ((eps / 2) / Cnorm (f1 x))%R) as [delta2 Hdelta2].
apply Rmult_lt_0_compat ; [fourier | apply Rinv_0_lt_compat ; apply Cnorm_pos_lt] ;
assumption.
assert (Hf2' : differentiable_pt f2 x v).
∃ l2 ; apply Hf2.
destruct (differentiable_continuous_along_axis f2 x v Hf2' R1 Rlt_0_1)
as [delta3 Hdelta3].
pose (delta := Rmin delta1 (Rmin delta2 delta3)) ; assert (delta_pos : 0 < delta) by
(repeat apply Rmin_pos ; [apply delta1 | apply delta2 | apply delta3]).
∃ (mkposreal delta delta_pos) ; intros h h_neq h_ub ;
rewrite Main ; [| apply IRC_neq_0_compat ; assumption] ;
clear Main ; repeat rewrite l1_eq, f2_eq in × ;
repeat rewrite Cmult_0_r ; repeat rewrite Cmult_0_l ;
repeat rewrite Cadd_0_l ; repeat rewrite Cadd_0_r ;
repeat rewrite Cminus_0_r in ×.
apply Rle_lt_trans with (Cnorm ((f1 (x + h × v)%C - f1 x) / (h × v) × f2 (x + h × v)%C) +
Cnorm (f1 x × (f2 (x + h × v)%C / (h × v) - l2)))%R ; [apply Cnorm_triang |].
apply Rlt_trans with (eps / 2 + Cnorm (f1 x × (f2 (x + h × v)%C / (h × v) - l2)))%R.
apply Rplus_lt_compat_r.
rewrite Cnorm_Cmult ; apply Rle_lt_trans with (eps / 2 × Cnorm (f2 (x + h × v)%C))%R.
apply Rmult_le_compat_r ; [apply Cnorm_pos |].
apply Rle_trans with (Cnorm ((f1 (x + h × v)%C - f1 x) / (h × v) - C0))%R ;
[right ; rewrite Cminus_0_r ; reflexivity | left ; apply Hdelta1].
assumption.
apply Rlt_le_trans with delta ; [apply h_ub | apply Rmin_l].
rewrite <- Rmult_1_r ; apply Rmult_lt_compat_l ; [fourier |].
apply Rle_lt_trans with (dist C_met (f2 (x + h × v)) 0) ; [right ; simpl ; unfold C_dist ;
rewrite Cminus_0_r ; reflexivity | apply Hdelta3].
apply Rlt_le_trans with delta ; [apply h_ub | apply Rle_trans with (Rmin delta2 delta3) ;
[apply Rmin_r | apply Rmin_r]].
apply Rlt_le_trans with (eps / 2 + eps / 2)%R ; [| right ; field].
apply Rplus_lt_compat_l ; rewrite Cnorm_Cmult.
apply Rlt_le_trans with (Cnorm (f1 x) × (/Cnorm (f1 x) × eps / 2))%R.
apply Rmult_lt_compat_l ; [apply Cnorm_pos_lt ; assumption |].
apply Rlt_le_trans with (eps / 2 / Cnorm (f1 x))%R ; [| right ; field].
apply Rle_lt_trans with (Cnorm ((f2 (x + h × v) - 0) / (h × v) - l2)) ; [right ;
rewrite Cminus_0_r ; reflexivity |] ; apply Hdelta2.
assumption.
apply Rlt_le_trans with delta ; [apply h_ub | apply Rle_trans with (Rmin delta2 delta3) ;
[apply Rmin_r | apply Rmin_l]].
apply Cnorm_no_R0 ; assumption.
right ; field ; apply Cnorm_no_R0 ; assumption.
destruct (Hf1 v_neq (Rmin(eps/3) ((eps/3) / Cnorm (f2 x)))%R) as [delta1 Hdelta1].
apply Rmin_pos ; [fourier |] ; apply Rmult_lt_0_compat ;
[fourier | apply Rinv_0_lt_compat ; apply Cnorm_pos_lt] ; assumption.
destruct (Hf2 v_neq ((eps / 3) / Cnorm (f1 x))%R) as [delta2 Hdelta2].
apply Rmult_lt_0_compat ;
[fourier | apply Rinv_0_lt_compat ; apply Cnorm_pos_lt] ; assumption.
assert (Hf2' : differentiable_pt f2 x v).
∃ l2 ; apply Hf2.
destruct (differentiable_continuous_along_axis f2 x v Hf2' R1 Rlt_0_1)
as [delta3 Hdelta3].
pose (delta := Rmin delta1 (Rmin delta2 delta3)) ; assert (delta_pos : 0 < delta) by
(repeat apply Rmin_pos ; [apply delta1 | apply delta2 | apply delta3]).
∃ (mkposreal delta delta_pos) ; intros h h_neq h_ub ;
rewrite Main ; [| apply IRC_neq_0_compat ; assumption] ;
clear Main ; repeat rewrite l1_eq in × ;
repeat rewrite Cmult_0_r ; repeat rewrite Cmult_0_l ;
repeat rewrite Cadd_0_l ; repeat rewrite Cadd_0_r ;
repeat rewrite Cminus_0_r in ×.
apply Rlt_le_trans with (eps/3 + eps/3 + eps/3)%R ; [| right ; field].
apply Rle_lt_trans with (Cnorm ((f1 (x + h × v)%C - f1 x) / (h × v) × f2 x +
(f1 (x + h × v)%C - f1 x) / (h × v) × (f2 (x + h × v)%C - f2 x)) +
Cnorm (f1 x × ((f2 (x + h × v)%C - f2 x) / (h × v) - l2)))%R ; [apply Cnorm_triang |].
apply Rlt_trans with (Cnorm ((f1 (x + h × v)%C - f1 x) / (h × v) × f2 x +
(f1 (x + h × v)%C - f1 x) / (h × v) × (f2 (x + h × v)%C - f2 x)) + eps / 3)%R.
apply Rplus_lt_compat_l.
rewrite Cnorm_Cmult ; apply Rlt_le_trans with (Cnorm (f1 x) × (eps / 3 / Cnorm (f1 x)))%R.
apply Rmult_lt_compat_l ; [apply Cnorm_pos_lt ; assumption |].
apply Hdelta2.
assumption.
apply Rlt_le_trans with delta ; [apply h_ub | apply Rle_trans with (Rmin delta2 delta3) ;
[apply Rmin_r | apply Rmin_l]].
right ; field ; apply Cnorm_no_R0 ; assumption.
apply Rplus_lt_compat_r.
apply Rle_lt_trans with (Cnorm ((f1 (x + h × v)%C - f1 x) / (h × v) × f2 x) +
Cnorm ((f1 (x + h × v)%C - f1 x) / (h × v) × (f2 (x + h × v)%C - f2 x)))%R ;
[apply Cnorm_triang |].
apply Rlt_trans with (Cnorm ((f1 (x + h × v)%C - f1 x) / (h × v) × f2 x) + eps / 3)%R.
apply Rplus_lt_compat_l.
rewrite Cnorm_Cmult ; apply Rle_lt_trans with (eps / 3 × Cnorm (f2 (x + h × v)%C - f2 x))%R.
apply Rmult_le_compat_r ; [apply Cnorm_pos |].
apply Rle_trans with (Rmin (eps / 3) (eps / 3 / Cnorm (f2 x))) ; [| apply Rmin_l].
apply Rle_trans with (Cnorm ((f1 (x + h × v)%C - f1 x) / (h × v) - 0))%R ;
[right ; rewrite Cminus_0_r ; reflexivity |] ; left ; apply Hdelta1.
assumption.
apply Rlt_le_trans with delta ; [apply h_ub | apply Rmin_l].
rewrite <- Rmult_1_r ; apply Rmult_lt_compat_l ; [fourier |] ;
simpl in Hdelta3 ; unfold C_dist in Hdelta3 ; apply Hdelta3.
apply Rlt_le_trans with delta ; [apply h_ub | apply Rle_trans with (Rmin delta2 delta3) ;
apply Rmin_r].
apply Rplus_lt_compat_r ; rewrite Cnorm_Cmult.
apply Rlt_le_trans with ((eps / 3 / Cnorm (f2 x)) × Cnorm (f2 x))%R.
apply Rmult_lt_compat_r ; [apply Cnorm_pos_lt ; assumption |].
apply Rlt_le_trans with (Rmin (eps / 3) (eps / 3 / Cnorm (f2 x))) ; [| apply Rmin_r].
apply Rle_lt_trans with (Cnorm ((f1 (x + h × v) - f1 x) / (h × v) - 0)) ; [right ;
rewrite Cminus_0_r ; reflexivity |].
apply Hdelta1.
assumption.
apply Rlt_le_trans with delta ; [apply h_ub | apply Rmin_l].
right ; field ; apply Cnorm_no_R0 ; assumption.
destruct (Ceq_dec (f1 x) 0) as [f1_eq | f1_neq].
destruct (Ceq_dec (f2 x) 0) as [f2_eq | f2_neq].
destruct (Hf1 v_neq (eps / 2)%R) as [delta1 Hdelta1] ; [fourier |].
assert (Hf2' : differentiable_pt f2 x v).
∃ l2 ; apply Hf2.
destruct (differentiable_continuous_along_axis f2 x v Hf2'
(Rmin R1 ((eps / 2) / Cnorm l1))) as [delta2 Hdelta2].
apply Rmin_pos ; [fourier |].
apply Rmult_lt_0_compat ; [fourier | apply Rinv_0_lt_compat ;
apply Cnorm_pos_lt ; assumption].
pose (delta := Rmin delta1 delta2) ; assert (delta_pos : 0 < delta) by
(apply Rmin_pos ; [apply delta1 | apply delta2]) ; ∃ (mkposreal delta
delta_pos) ; intros h h_neq h_ub ;
rewrite Main ; [| apply IRC_neq_0_compat ; assumption] ;
clear Main ; repeat rewrite f1_eq, f2_eq in × ;
repeat rewrite Cmult_0_r ; repeat rewrite Cmult_0_l ;
repeat rewrite Cadd_0_l ; repeat rewrite Cadd_0_r ;
repeat rewrite Cminus_0_r in ×.
apply Rle_lt_trans with (Cnorm ((f1 (x + h × v)%C / (h × v) - l1) × f2 (x + h × v)%C) +
Cnorm (l1 × f2 (x + h × v)%C))%R ; [apply Cnorm_triang |].
apply Rlt_le_trans with (eps / 2 + eps / 2)%R ; [| right ; field].
apply Rle_lt_trans with (Cnorm ((f1 (x + h × v)%C / (h × v) - l1) ×
f2 (x + h × v)%C) + eps / 2)%R.
apply Rplus_le_compat_l.
rewrite Cnorm_Cmult ; apply Rle_trans with (Cnorm l1 × ((eps / 2) / Cnorm l1))%R.
apply Rmult_le_compat_l ; [apply Cnorm_pos |].
apply Rle_trans with (Rmin 1 (eps / 2 / Cnorm l1)) ; [| apply Rmin_r].
apply Rle_trans with (dist C_met (f2 (x + h × v)) 0) ; [simpl ; unfold C_dist ; right ;
rewrite Cminus_0_r ; reflexivity | left ; apply Hdelta2].
apply Rlt_le_trans with delta ; [apply h_ub | apply Rmin_r].
right ; field ; apply Cnorm_no_R0 ; assumption.
apply Rplus_lt_compat_r ; rewrite Cnorm_Cmult ; apply Rle_lt_trans with
(eps / 2 × Cnorm (f2 (x + h × v)%C))%R.
apply Rmult_le_compat_r ; [apply Cnorm_pos |].
apply Rle_trans with (Cnorm ((f1 (x + h × v) - 0) / (h × v) - l1)) ; [rewrite Cminus_0_r ;
right ; reflexivity | left ; apply Hdelta1].
assumption.
apply Rlt_le_trans with delta ; [apply h_ub | apply Rmin_l].
rewrite <- Rmult_1_r ; apply Rmult_lt_compat_l ; [fourier |].
apply Rle_lt_trans with (dist C_met (f2 (x + h × v)) 0) ; [simpl ; unfold C_dist ;
rewrite Cminus_0_r ; right ; reflexivity |].
apply Rlt_le_trans with (Rmin 1 (eps / 2 / Cnorm l1)) ; [apply Hdelta2 |
apply Rmin_l].
apply Rlt_le_trans with delta ; [apply h_ub | apply Rmin_r].
destruct (Hf1 v_neq (Rmin (eps / 3) (eps / 3 / Cnorm (f2 x)))) as [delta1 Hdelta1].
apply Rmin_pos ; [fourier |] ; apply Rmult_lt_0_compat ;
[fourier | apply Rinv_0_lt_compat ; apply Cnorm_pos_lt] ; assumption.
assert (Hf2' : differentiable_pt f2 x v).
∃ l2 ; apply Hf2.
destruct (differentiable_continuous_along_axis f2 x v Hf2' (Rmin 1 (eps / 3 / Cnorm l1)))
as [delta2 Hdelta2].
apply Rmin_pos ; [apply Rlt_0_1 | apply Rmult_lt_0_compat ;
[fourier | apply Rinv_0_lt_compat ; apply Cnorm_pos_lt] ; assumption].
pose (delta := Rmin delta1 delta2) ; assert (delta_pos : 0 < delta) by
(apply Rmin_pos ; [apply delta1 | apply delta2]) ;
∃ (mkposreal delta delta_pos) ; intros h h_neq h_ub ;
rewrite Main ; [| apply IRC_neq_0_compat ; assumption] ;
clear Main ; repeat rewrite f1_eq in × ;
repeat rewrite Cmult_0_r ; repeat rewrite Cmult_0_l ;
repeat rewrite Cadd_0_l ; repeat rewrite Cadd_0_r ;
repeat rewrite Cminus_0_r in ×.
apply Rle_lt_trans with (Cnorm ((f1 (x + h × v)%C / (h × v) - l1) × f2 x) +
Cnorm ((f1 (x + h × v)%C / (h × v) - l1) × (f2 (x + h × v)%C - f2 x) +
l1 × (f2 (x + h × v)%C - f2 x)))%R ; [rewrite Cadd_assoc ; apply Cnorm_triang |].
apply Rle_lt_trans with (Cnorm ((f1 (x + h × v)%C / (h × v) - l1) × f2 x) +
Cnorm ((f1 (x + h × v)%C / (h × v) - l1) × (f2 (x + h × v)%C - f2 x)) +
Cnorm (l1 × (f2 (x + h × v)%C - f2 x)))%R.
rewrite Rplus_assoc ; apply Rplus_le_compat_l ; apply Cnorm_triang.
apply Rlt_trans with (eps/3 + Cnorm ((f1 (x + h × v)%C / (h × v) - l1) ×
(f2 (x + h × v)%C - f2 x)) + Cnorm (l1 × (f2 (x + h × v)%C - f2 x)))%R.
repeat apply Rplus_lt_compat_r ; rewrite Cnorm_Cmult ;
apply Rlt_le_trans with ((eps / 3 / Cnorm (f2 x)) × Cnorm (f2 x))%R.
apply Rmult_lt_compat_r ; [apply Cnorm_pos_lt ; assumption |].
apply Rlt_le_trans with (Rmin (eps / 3) (eps / 3 / Cnorm (f2 x))) ;
[| apply Rmin_r].
apply Rle_lt_trans with (Cnorm ((f1 (x + h × v) - 0) / (h × v) - l1)) ;
[rewrite Cminus_0_r ; right ; reflexivity | apply Hdelta1].
assumption.
apply Rlt_le_trans with delta ; [apply h_ub | apply Rmin_l].
right ; field ; apply Cnorm_no_R0 ; assumption.
apply Rlt_trans with (eps / 3 + eps / 3 + Cnorm (l1 × (f2 (x + h × v)%C - f2 x)))%R ;
[apply Rplus_lt_compat_r ; apply Rplus_lt_compat_l |].
rewrite Cnorm_Cmult ; apply Rle_lt_trans with
(eps / 3 × Cnorm ((f2 (x + h × v)%C - f2 x)))%R ; [apply Rmult_le_compat_r ;
[apply Cnorm_pos |]|].
apply Rle_trans with (Rmin (eps / 3) (eps / 3 / Cnorm (f2 x))) ; [| apply Rmin_l] ;
apply Rle_trans with (Cnorm ((f1 (x + h × v)%C - C0) / (h × v) - l1))%R ; [right ;
rewrite Cminus_0_r ; reflexivity | left ; apply Hdelta1].
assumption.
apply Rlt_le_trans with delta ; [apply h_ub | apply Rmin_l].
rewrite <- Rmult_1_r ; apply Rmult_lt_compat_l ; [fourier |].
apply Rle_lt_trans with (dist C_met (f2 (x + h × v)) (f2 x)) ; [right ;
simpl ; unfold C_dist ; reflexivity |].
apply Rlt_le_trans with (Rmin 1 (eps / 3 / Cnorm l1)) ; [apply Hdelta2 | apply Rmin_l].
apply Rlt_le_trans with delta ; [apply h_ub | apply Rmin_r].
apply Rlt_le_trans with (eps / 3 + eps / 3 + eps / 3)%R ; [apply Rplus_lt_compat_l |
right ; field].
rewrite Cnorm_Cmult ; apply Rlt_le_trans with (Cnorm l1 × (eps / 3 / Cnorm l1))%R.
apply Rmult_lt_compat_l ; [apply Cnorm_pos_lt ; assumption |].
apply Rle_lt_trans with (dist C_met (f2 (x + h × v)) (f2 x)) ; [simpl ; unfold C_dist ;
right ; reflexivity | apply Rlt_le_trans with (Rmin 1 (eps / 3 / Cnorm l1)) ;
[apply Hdelta2 | apply Rmin_r]].
apply Rlt_le_trans with delta ; [apply h_ub | apply Rmin_r].
right ; field ; apply Cnorm_no_R0 ; assumption.
destruct (Ceq_dec (f2 x) 0) as [f2_eq | f2_neq].
destruct (Hf1 v_neq (eps / 3)%R) as [delta1 Hdelta1] ; [fourier |].
destruct (Hf2 v_neq (eps / 3 / Cnorm (f1 x))%R) as [delta2 Hdelta2].
apply Rmult_lt_0_compat ; [fourier | apply Rinv_0_lt_compat ;
apply Cnorm_pos_lt] ; assumption.
assert (Hf2' : differentiable_pt f2 x v).
∃ l2 ; apply Hf2.
destruct (differentiable_continuous_along_axis f2 x v Hf2' (Rmin 1 (eps / 3 / Cnorm l1)))
as [delta3 Hdelta3].
apply Rmin_pos ; [apply Rlt_0_1 |] ; apply Rmult_lt_0_compat ;
[fourier | apply Rinv_0_lt_compat ; apply Cnorm_pos_lt] ; assumption.
pose (delta := Rmin delta1 (Rmin delta2 delta3)) ; assert (delta_pos : 0 < delta) by
(repeat apply Rmin_pos ; [apply delta1 | apply delta2 | apply delta3]) ;
∃ (mkposreal delta delta_pos) ; intros h h_neq h_ub ;
rewrite Main ; [| apply IRC_neq_0_compat ; assumption] ;
clear Main ; repeat rewrite f2_eq in × ;
repeat rewrite Cmult_0_r ; repeat rewrite Cmult_0_l ;
repeat rewrite Cadd_0_l ; repeat rewrite Cadd_0_r ;
repeat rewrite Cminus_0_r in ×.
apply Rle_lt_trans with (Cnorm (((f1 (x + h × v)%C - f1 x) / (h × v) - l1) × f2 (x + h × v)%C +
l1 × f2 (x + h × v)%C) + Cnorm (f1 x × (f2 (x + h × v)%C / (h × v) - l2)))%R ;
[apply Cnorm_triang |] ; apply Rle_lt_trans with (Cnorm
(((f1 (x + h × v)%C - f1 x) / (h × v) - l1) × f2 (x + h × v)%C) +
Cnorm (l1 × f2 (x + h × v)%C) + Cnorm (f1 x × (f2 (x + h × v)%C / (h × v) - l2)))%R ;
[apply Rplus_le_compat_r ; apply Cnorm_triang |].
apply Rle_lt_trans with (eps / 3 + Cnorm (l1 × f2 (x + h × v)%C) +
Cnorm (f1 x × (f2 (x + h × v)%C / (h × v) - l2)))%R ; [repeat apply Rplus_le_compat_r |].
rewrite Cnorm_Cmult ; apply Rle_trans with (eps / 3 × Cnorm (f2 (x + h × v)%C))%R ;
[apply Rmult_le_compat_r ; [apply Cnorm_pos | left ; apply Hdelta1] |].
assumption.
apply Rlt_le_trans with delta ; [apply h_ub | apply Rmin_l].
rewrite <- Rmult_1_r ; apply Rmult_le_compat_l ; [fourier |] ;
apply Rle_trans with (dist C_met (f2 (x + h × v)) 0) ; [simpl ; unfold C_dist ; rewrite
Cminus_0_r ; right ; reflexivity |] ; apply Rle_trans with (Rmin 1 (eps / 3 / Cnorm l1)) ;
[left ; apply Hdelta3 | apply Rmin_l].
apply Rlt_le_trans with delta ; [apply h_ub | apply Rle_trans with (Rmin delta2 delta3) ;
apply Rmin_r].
apply Rle_lt_trans with (eps / 3 + eps / 3 +
Cnorm (f1 x × (f2 (x + h × v)%C / (h × v) - l2)))%R ;
[apply Rplus_le_compat_r ; apply Rplus_le_compat_l |].
rewrite Cnorm_Cmult ; apply Rle_trans with (Cnorm l1 × (eps / 3 / Cnorm l1))%R ;
[apply Rmult_le_compat_l ; [apply Cnorm_pos|] |].
apply Rle_trans with (dist C_met (f2 (x + h × v)) 0) ; [simpl ; unfold C_dist ; rewrite
Cminus_0_r ; right ; reflexivity |] ; apply Rle_trans with (Rmin 1 (eps / 3 / Cnorm l1)) ;
[left ; apply Hdelta3 | apply Rmin_r].
apply Rlt_le_trans with delta ; [apply h_ub | apply Rle_trans with (Rmin delta2 delta3) ;
apply Rmin_r].
right ; field ; apply Cnorm_no_R0 ; assumption.
apply Rlt_le_trans with (eps / 3 + eps / 3 + eps /3)%R ; [repeat rewrite Rplus_assoc ;
repeat apply Rplus_lt_compat_l | right ; field].
rewrite Cnorm_Cmult ; apply Rlt_le_trans with (Cnorm (f1 x) × (eps / 3 / Cnorm (f1 x)))%R.
apply Rmult_lt_compat_l ; [apply Cnorm_pos_lt ; assumption |].
apply Rle_lt_trans with (Cnorm ((f2 (x + h × v)%C - 0) / (h × v) - l2))%R ;
[rewrite Cminus_0_r ; right ; reflexivity | apply Hdelta2].
assumption.
apply Rlt_le_trans with delta ; [apply h_ub | apply Rle_trans with (Rmin delta2 delta3) ;
[apply Rmin_r | apply Rmin_l]].
right ; field ; apply Cnorm_no_R0 ; assumption.
destruct (Hf1 v_neq (Rmin (eps / 4) (eps / 4 / Cnorm (f2 x)))) as [delta1 Hdelta1].
apply Rmin_pos ; [fourier |] ; apply Rmult_lt_0_compat ; [fourier | apply Rinv_0_lt_compat ;
apply Cnorm_pos_lt] ; assumption.
destruct (Hf2 v_neq (eps / 4 / Cnorm (f1 x))%R) as [delta2 Hdelta2].
apply Rmult_lt_0_compat ; [fourier | apply Rinv_0_lt_compat ;
apply Cnorm_pos_lt] ; assumption.
assert (Hf2' : differentiable_pt f2 x v).
∃ l2 ; apply Hf2.
destruct (differentiable_continuous_along_axis f2 x v Hf2' (Rmin 1 (eps / 4 / Cnorm l1)))
as [delta3 Hdelta3].
apply Rmin_pos ; [apply Rlt_0_1 |] ; apply Rmult_lt_0_compat ;
[fourier | apply Rinv_0_lt_compat ; apply Cnorm_pos_lt] ; assumption.
pose (delta := Rmin delta1 (Rmin delta2 delta3)) ; assert (delta_pos : 0 < delta) by
(repeat apply Rmin_pos ; [apply delta1 | apply delta2 | apply delta3]) ;
∃ (mkposreal delta delta_pos) ; intros h h_neq h_ub ;
rewrite Main ; [| apply IRC_neq_0_compat ; assumption] ;
clear Main.
apply Rle_lt_trans with (Cnorm (((f1 (x + h × v)%C - f1 x) / (h × v) - l1) × f2 x +
((f1 (x + h × v)%C - f1 x) / (h × v) - l1) × (f2 (x + h × v)%C - f2 x) +
l1 × (f2 (x + h × v)%C - f2 x)) + Cnorm (f1 x × ((f2 (x + h × v)%C - f2 x) / (h × v) - l2)))%R ;
[apply Cnorm_triang |].
apply Rle_lt_trans with (Cnorm (((f1 (x + h × v)%C - f1 x) / (h × v) - l1) × f2 x +
((f1 (x + h × v)%C - f1 x) / (h × v) - l1) × (f2 (x + h × v)%C - f2 x)) + Cnorm (
l1 × (f2 (x + h × v)%C - f2 x)) + Cnorm (f1 x × ((f2 (x + h × v)%C - f2 x) / (h × v) - l2)))%R ;
[apply Rplus_le_compat_r ; apply Cnorm_triang |].
apply Rle_lt_trans with (Cnorm (((f1 (x + h × v)%C - f1 x) / (h × v) - l1) × f2 x) +
Cnorm (((f1 (x + h × v)%C - f1 x) / (h × v) - l1) × (f2 (x + h × v)%C - f2 x)) + Cnorm (
l1 × (f2 (x + h × v)%C - f2 x)) + Cnorm (f1 x × ((f2 (x + h × v)%C - f2 x) / (h × v) - l2)))%R ;
[repeat apply Rplus_le_compat_r ; apply Cnorm_triang |].
apply Rle_lt_trans with (eps / 4 +
Cnorm (((f1 (x + h × v)%C - f1 x) / (h × v) - l1) × (f2 (x + h × v)%C - f2 x)) +
Cnorm (l1 × (f2 (x + h × v)%C - f2 x)) +
Cnorm (f1 x × ((f2 (x + h × v)%C - f2 x) / (h × v) - l2)))%R ;
[repeat apply Rplus_le_compat_r |].
rewrite Cnorm_Cmult ; apply Rle_trans with ((eps / 4 / Cnorm (f2 x)) × Cnorm (f2 x))%R ;
[apply Rmult_le_compat_r ; [apply Cnorm_pos |] |].
apply Rle_trans with (Rmin (eps / 4) (eps / 4 / Cnorm (f2 x))) ; [left ; apply Hdelta1 |
apply Rmin_r].
assumption.
apply Rlt_le_trans with delta ; [apply h_ub | apply Rmin_l].
right ; field ; apply Cnorm_no_R0 ; assumption.
apply Rle_lt_trans with (eps / 4 + eps / 4 + Cnorm (l1 × (f2 (x + h × v)%C - f2 x)) +
Cnorm (f1 x × ((f2 (x + h × v)%C - f2 x) / (h × v) - l2)))%R ;
[repeat apply Rplus_le_compat_r ; apply Rplus_le_compat_l |].
rewrite Cnorm_Cmult ; apply Rle_trans with (eps / 4 ×
Cnorm ((f2 (x + h × v)%C - f2 x)))%R ; [apply Rmult_le_compat_r ;
[apply Cnorm_pos |] |].
apply Rle_trans with (Rmin (eps / 4) (eps / 4 / Cnorm (f2 x))) ; [left ;
apply Hdelta1 | apply Rmin_l].
assumption.
apply Rlt_le_trans with delta ; [apply h_ub | apply Rmin_l].
rewrite <- Rmult_1_r ; apply Rmult_le_compat_l ; [fourier |] ;
apply Rle_trans with (Rmin 1 (eps / 4 / Cnorm l1)) ; [| apply Rmin_l].
apply Rle_trans with (dist C_met (f2 (x + h × v)) (f2 x)) ; [simpl ; unfold C_dist ;
right ; reflexivity | left ; apply Hdelta3].
apply Rlt_le_trans with delta ; [apply h_ub | apply Rle_trans with
(Rmin delta2 delta3) ; apply Rmin_r].
apply Rle_lt_trans with (eps / 4 + eps / 4 + eps / 4 +
Cnorm (f1 x × ((f2 (x + h × v)%C - f2 x) / (h × v) - l2)))%R ;
[repeat apply Rplus_le_compat_r ; apply Rplus_le_compat_l |].
rewrite Cnorm_Cmult ; apply Rle_trans with (Cnorm l1 × (eps / 4 / Cnorm l1))%R ;
[apply Rmult_le_compat_l ; [apply Cnorm_pos |] | right ; field ;
apply Cnorm_no_R0 ; assumption].
apply Rle_trans with (Rmin 1 (eps / 4 / Cnorm l1)) ; [| apply Rmin_r].
apply Rle_trans with (dist C_met (f2 (x + h × v)) (f2 x)) ; [simpl ;
unfold C_dist ; right ; reflexivity | left ; apply Hdelta3].
apply Rlt_le_trans with delta ; [apply h_ub | apply Rle_trans with
(Rmin delta2 delta3) ; apply Rmin_r].
apply Rlt_le_trans with (eps / 4 + eps / 4 + eps / 4 + eps / 4)%R ; [| right ; field].
apply Rplus_lt_compat_l.
rewrite Cnorm_Cmult ; apply Rlt_le_trans with (Cnorm (f1 x) ×
(eps / 4 / Cnorm (f1 x)))%R ; [apply Rmult_lt_compat_l ; [apply Cnorm_pos_lt ;
assumption |] | right ; field ; apply Cnorm_no_R0 ; assumption] ;
apply Hdelta2.
assumption.
apply Rlt_le_trans with delta ; [apply h_ub | apply Rle_trans with
(Rmin delta2 delta3) ; [apply Rmin_r | apply Rmin_l]].
Qed.
Lemma differentiable_pt_lim_scal : ∀ f a x v l, v ≠ 0 →
differentiable_pt_lim f x v l → differentiable_pt_lim (fun x ⇒ a × f x) x v (a × l).
Proof.
intros f a x v l v_neq f_diff.
assert (H0 := differentiable_pt_lim_const a x v).
replace (mult_real_fct a f) with (fct_cte a × f)%F.
replace (a × l) with (0 × f x + a × l); [ idtac | ring ].
apply (differentiable_pt_lim_mult (fct_cte a) f x v 0 l) ; assumption.
unfold mult_real_fct, mult_fct, fct_cte in |- *; reflexivity.
Qed.
Lemma differentiable_pt_lim_id : ∀ x v, differentiable_pt_lim id x v C1.
Proof.
intros x v v_neq ; unfold differentiable_pt_lim in |- ×.
intros eps Heps; ∃ (mkposreal eps Heps); intros h H1 H2;
unfold id in |- *; replace ((x + h × v - x) / (h × v) - 1) with 0.
rewrite Cnorm_C0 ; assumption.
replace (x + h × v - x) with (h × v) by ring.
replace (h ×v / (h ×v)) with 1.
unfold Cminus ; rewrite Cadd_opp_r ; reflexivity.
unfold Cdiv ; rewrite Cinv_r ; trivial.
apply Cmult_integral_contrapositive_currified ; [apply IRC_neq_0_compat |] ;
assumption.
Qed.