Library Coqtail.Reals.Ranalysis.Nth_derivative_facts
Require Import Reals.
Require Import Rfunction_classes.
Require Import Ranalysis_def Ranalysis_def_simpl Rfunction_def Rextensionality.
Require Import Ranalysis_continuity Ranalysis_derivability Ranalysis_monotonicity.
Require Import Rinterval.
Require Import Nth_derivative_def.
Open Local Scope R_scope.
Require Import Rfunction_classes.
Require Import Ranalysis_def Ranalysis_def_simpl Rfunction_def Rextensionality.
Require Import Ranalysis_continuity Ranalysis_derivability Ranalysis_monotonicity.
Require Import Rinterval.
Require Import Nth_derivative_def.
Open Local Scope R_scope.
Lemma nth_derive_0: ∀ (f : R → R) (pr : D O f),
nth_derive f pr == f.
Proof.
intros ; reflexivity.
Qed.
Lemma nth_derive_Rball_0: ∀ c r f (pr : D_Rball c r O f),
nth_derive_Rball c r f pr == f.
Proof.
intros ; reflexivity.
Qed.
Lemma nth_derive_1 : ∀ (f : R → R) (pr : D 1 f) (pr' : derivable f),
nth_derive f pr == derive f pr'.
Proof.
intros f pr pr' x ; apply derive_ext ; reflexivity.
Qed.
Lemma nth_derive_Rball_1: ∀ c r f (pr : D_Rball c r 1 f) pr',
nth_derive_Rball c r f pr == derive_Rball c r f pr'.
Proof.
intros ; eapply derive_Rball_ext ; reflexivity.
Qed.
Extensionality of nth_derive (and equality with nth_derive' as a corrolary).
Lemma nth_derive_ext : ∀ (n : nat) (f g : R → R)
(pr1 : D n f) (pr2 : D n g), f == g →
nth_derive f pr1 == nth_derive g pr2.
Proof.
intro n ; induction n ; intros ; simpl ;
[| apply IHn ; apply derive_ext] ; assumption.
Qed.
Lemma nth_derive_Rball_ext : ∀ c r (n : nat) (f g : R → R)
(pr1 : D_Rball c r n f) (pr2 : D_Rball c r n g), Rball_eq c r f g →
Rball_eq c r (nth_derive_Rball c r f pr1) (nth_derive_Rball c r g pr2).
Proof.
intros c r n ; induction n ; intros f g pr1 pr2 Heq.
apply Heq.
apply IHn ; intros x x_in ; eapply derive_Rball_ext_strong ; eassumption.
Qed.
Lemma nth_derive_Rball_ext_weak: ∀ c r n f g
(pr1 : D_Rball c r n f) (pr2 : D_Rball c r n g), f == g →
nth_derive_Rball c r f pr1 == nth_derive_Rball c r g pr2.
Proof.
intros c r n ; induction n ; intros f g pr1 pr2 Heq.
apply Heq.
apply IHn, derive_Rball_ext_strong, Req_Rball_eq ; assumption.
Qed.
Lemma nth_derive_nth_derive': ∀ m n f g (pr : D n f)
(pr' : D m g) (le: (n ≤ m)%nat), f == g →
nth_derive f pr == nth_derive' n g pr' le.
Proof.
intros ; apply nth_derive_ext ; assumption.
Qed.
Lemma nth_derive_Rball_nth_derive_Rball': ∀ c r m n f g
(pr : D_Rball c r n f) (pr' : D_Rball c r m g) (le: (n ≤ m)%nat),
Rball_eq c r f g →
Rball_eq c r (nth_derive_Rball c r f pr) (nth_derive_Rball' c r n g pr' le).
Proof.
intro_all ; eapply nth_derive_Rball_ext ; eassumption.
Qed.
Lemma nth_derive'_ext : ∀ (f g : R → R) (k m n : nat)
(pr1 : D k f) (pr2 : D m g) (nlek : (n ≤ k)%nat)
(nlem : (n ≤ m)%nat), f == g →
nth_derive' n f pr1 nlek == nth_derive' n g pr2 nlem.
Proof.
intros ; apply nth_derive_ext ; assumption.
Qed.
Lemma nth_derive_PI : ∀ (n : nat) (f : R → R) (pr1 pr2 : D n f),
nth_derive f pr1 == nth_derive f pr2.
Proof.
intros ; apply nth_derive_ext ; reflexivity.
Qed.
Lemma nth_derive_Rball_PI: ∀ c r n f
(pr1: D_Rball c r n f) (pr2: D_Rball c r n f),
Rball_eq c r (nth_derive_Rball c r f pr1) (nth_derive_Rball c r f pr2).
Proof.
intros ; apply nth_derive_Rball_ext ; reflexivity.
Qed.
Lemma nth_derive'_PI : ∀ {k m n : nat} (f : R → R)
(pr1 : D k f) (pr2 : D m f) (nlek : (n ≤ k)%nat) (nlem : (n ≤ m)%nat),
nth_derive' n f pr1 nlek == nth_derive' n f pr2 nlem.
Proof.
intros ; apply nth_derive'_ext ; reflexivity.
Qed.
Lemma nth_derive_Rball'_PI: ∀ c r m n f
(pr1: D_Rball c r m f) (pr2: D_Rball c r m f) (le1 le2: (n ≤ m)%nat),
Rball_eq c r (nth_derive_Rball' c r n f pr1 le1)
(nth_derive_Rball' c r n f pr2 le2).
Proof.
intros ; apply nth_derive_Rball_ext ; reflexivity.
Qed.
Lemma derivable_nth_derive : ∀ n f (pr : derivable f) (pr1 : D (S n) f)
(pr2 : D n (derive f pr)) l x, nth_derive (derive f pr) pr2 x = l →
nth_derive f pr1 x = l.
Proof.
intros n f pr pr1 pr2 l x Hl.
simpl.
rewrite nth_derive_ext with (g := derive f pr) (pr2 := pr2).
assumption.
intro ; unfold derive ; apply pr_nu_var ; reflexivity.
Qed.
Lemma derivable_nth_derive_Rball : ∀ c r n f (pr : derivable_Rball c r f)
(pr1 : D_Rball c r (S n) f) (pr2 : D_Rball c r n (derive_Rball c r f pr)) l x,
Rball c r x →
nth_derive_Rball c r (derive_Rball c r f pr) pr2 x = l →
nth_derive_Rball c r f pr1 x = l.
Proof.
intros c r n f pr pr1 pr2 l x Hl x_in.
simpl.
rewrite nth_derive_Rball_ext with (g := derive_Rball c r f pr) (pr2 := pr2).
assumption.
apply Req_Rball_eq, derive_Rball_ext_strong ; reflexivity.
assumption.
Qed.