Library Coqtail.Reals.Rintegral.Rintegral_usual
Some usual integrals
Require Import Reals.
Require Import MyRfunctions.
Require Import Rintegral.
Open Scope R_scope.
Lemma Rint_inv : ∀ a b,
0 < a ≤ b → Rint (fun x ⇒ /x) a b (ln b - ln a).
intros a b Hab.
apply Rint_derive.
intuition.
intros x Hx.
apply derivable_pt_lim_ln.
apply Rlt_le_trans with a; intuition.
intros x Hx.
apply continuity_pt_inv.
apply derivable_continuous, derivable_id.
assert( 0 < x).
apply Rlt_le_trans with a; tauto.
auto with ×.
Qed.
Hint Resolve Rint_inv : Rint.
Lemma Rint_exp : ∀ a b, Rint exp a b (exp b - exp a).
Proof.
intros a b.
apply Rint_derive2.
intros; apply derivable_pt_lim_exp.
intros; apply derivable_continuous_pt, derivable_pt_exp.
Qed.
Hint Resolve Rint_exp : Rint.
Lemma Rint_pow_pos : ∀ n a b,
Rint (fun y : R ⇒ INR n × y ^ (pred n)) a b ((b ^ n - a ^ n)).
Proof.
intros n a b.
destruct n.
replace (b ^ 0 - a ^ 0) with (0 × (b - a)) by ring.
apply Rint_eq_compat with (fct_cte 0).
unfold fct_cte; auto with ×.
apply Rint_constant.
apply Rint_derive2 with (f := fun x ⇒ x ^ (S n)); intros.
apply derivable_pt_lim_pow_pos; omega.
apply continuity_pt_mult.
apply continuity_pt_const; intros u v ; reflexivity.
induction n.
apply continuity_pt_const; intros u v ; reflexivity.
simpl.
apply continuity_pt_mult.
auto with Rcont.
auto with Rcont.
Qed.
Hint Resolve Rint_pow_pos : Rint.
Lemma Rint_cos : ∀ a b,
Rint cos a b (sin b - sin a).
Proof.
intros a b.
apply Rint_derive2.
intros; apply derivable_pt_lim_sin.
intros; apply continuity_cos.
Qed.
Hint Resolve Rint_cos : Rint.
Lemma Rint_sin : ∀ a b,
Rint sin a b (cos a - cos b).
intros a b.
replace (cos a - cos b) with (- cos b - -cos a) by ring.
apply Rint_derive2 with (f := (-cos)%F).
intros; replace (sin x) with (--sin x) by ring;
apply derivable_pt_lim_opp, derivable_pt_lim_cos.
intros; apply continuity_sin.
Qed.
Hint Resolve Rint_sin : Rint.
Lemma Rint_sqrt_inv : ∀ a b, 0 < a → 0 < b →
Rint (fun x ⇒ /(sqrt x)) a b (2 *( sqrt b - sqrt a)).
Proof.
intros a b Ha Hb.
assert(Hneq : ∀ x, Rmin a b ≤ x ≤ Rmax a b → 0 < sqrt x).
intros;
apply sqrt_lt_R0.
apply Rlt_le_trans with (Rmin a b).
apply Rmin_pos; assumption.
intuition.
apply Rint_eq_compat with (fun x ⇒ 2 × /(2 × sqrt x)).
intros; field.
auto with ×.
apply Rint_scalar_mult_compat_l.
apply Rint_derive2.
intros; apply derivable_pt_lim_sqrt.
apply Rlt_le_trans with (Rmin a b).
apply Rmin_pos; assumption.
intuition.
intros.
apply continuity_pt_inv.
apply continuity_pt_mult.
apply continuity_pt_constant.
apply continuity_pt_sqrt.
apply Rle_trans with (Rmin a b).
apply Rmin_ge; intuition.
intuition.
assert( 0 < 2 × sqrt x).
apply Rmult_lt_0_compat.
auto with ×.
auto.
auto with ×.
Qed.
Hint Resolve Rint_sqrt_inv : Rint.