Library Coqtail.Complex.Canalysis_deriv
Require Import MyRIneq.
Require Import Rinterval Ranalysis_def Ranalysis_def_simpl Ranalysis_continuity.
Require Import Ranalysis_derivability Ranalysis_usual Ranalysis_facts Ranalysis_MVT.
Require Import Canalysis_def.
Require Import Canalysis_diff.
Require Import Cprop_base.
Require Import Cnorm.
Require Import Cderiv.
Require Import Ctacfield.
Open Scope C_scope.
Lemma uniqueness_step1 : ∀ f x l1 l2,
limit1_in (fun h ⇒ (f (x + h) - f x) / h) (fun h ⇒ h ≠ 0) l1 0 →
limit1_in (fun h ⇒ (f (x + h) - f x) / h) (fun h ⇒ h ≠ 0) l2 0 →
l1 = l2.
Proof.
intros f x l1 l2 Hl1 Hl2 ;
apply (single_limit (fun h ⇒ (f (x + h) - f x) / h) (fun h ⇒ h ≠ 0) l1 l2 0);
try assumption.
intros alpha alpha_pos ; ∃ (IRC (alpha / 2)) ; split.
apply (proj2 (C0_neq_R0_neq _)) ; left ; simpl ; apply Rgt_not_eq ; fourier.
unfold C_dist ; rewrite Cminus_0_r ; rewrite Cnorm_IRC_Rabs ;
rewrite Rabs_right ; fourier.
Qed.
Lemma uniqueness_step2 : ∀ f x l,
derivable_pt_lim f x l →
limit1_in (fun h ⇒ (f (x + h) - f x) / h) (fun h ⇒ h ≠ 0) l 0.
Proof.
unfold derivable_pt_lim, limit1_in, limit_in.
intros f x l Hf_deriv eps eps_pos ; destruct (Hf_deriv eps eps_pos)
as ([alpha alpha_pos], Halpha) ; clear Hf_deriv ; ∃ alpha ; split ;
[assumption |] ; intros h [h_neq Hh] ; simpl in × ; unfold C_dist in Hh ;
rewrite Cminus_0_r in Hh ; apply Halpha ; intuition.
Qed.
Lemma uniqueness_step3 : ∀ f x l,
limit1_in (fun h ⇒ (f (x + h) - f x) / h) (fun h ⇒ h ≠ 0) l 0 →
derivable_pt_lim f x l.
Proof.
unfold limit1_in, derivable_pt_lim, limit_in, C_dist ; simpl ; unfold C_dist ;
intros f x l Hf_lim eps eps_pos ; destruct (Hf_lim eps eps_pos) as
(alpha, [alpha_pos Halpha]) ; clear Hf_lim ;
∃ (mkposreal alpha alpha_pos) ; intros h h_neq Hyp ;
apply Halpha ; rewrite Cminus_0_r ; split ; assumption.
Qed.
Lemma uniqueness_limite : ∀ f x l1 l2,
derivable_pt_lim f x l1 → derivable_pt_lim f x l2 → l1 = l2.
Proof.
intros f x l1 l2 Hf_deriv1 Hf_deriv2 ;
assert (H1 := uniqueness_step2 _ _ _ Hf_deriv1) ;
assert (H2 := uniqueness_step2 _ _ _ Hf_deriv2) ;
apply uniqueness_step1 with f x ; assumption.
Qed.
Lemma derive_pt_eq : ∀ f x l (pr:derivable_pt f x),
derive_pt f x pr = l ↔ derivable_pt_lim f x l.
Proof.
intros f x l pr ; split ; intro Hf_deriv.
assert (H := proj2_sig pr) ; unfold derive_pt in Hf_deriv ;
rewrite Hf_deriv in H ; assumption.
assert (H := proj2_sig pr) ; unfold derivable_pt_abs in H ;
assert (H' := uniqueness_limite _ _ _ _ Hf_deriv H) ;
symmetry ; assumption.
Qed.
Lemma derive_pt_eq_0 : ∀ f x l (pr:derivable_pt f x),
derivable_pt_lim f x l → derive_pt f x pr = l.
Proof.
intros f x l pr ; destruct (derive_pt_eq f x l pr) ; assumption.
Qed.
Lemma derive_pt_eq_1 : ∀ f x l (pr:derivable_pt f x),
derive_pt f x pr = l → derivable_pt_lim f x l.
Proof.
intros f x l pr ; destruct (derive_pt_eq f x l pr) ; assumption.
Qed.
Lemma derive_pt_D_in : ∀ (f df:C → C) (x:C) (pr:derivable_pt f x),
D_in f df no_cond x ↔ derive_pt f x pr = df x.
Proof.
intros f df x pr ; split.
unfold D_in, limit1_in, limit_in ; simpl ; unfold C_dist ; intros.
apply derive_pt_eq_0.
intros eps eps_pos ; destruct (H eps eps_pos) as [alpha [alpha_pos Halpha]] ;
∃ (mkposreal alpha alpha_pos) ; intros h h_neq h_bd.
fold C in h ; assert (Hrew : h = (x + h) - x) by ring ; rewrite Hrew at 2.
apply Halpha ; split.
unfold D_x, no_cond ; split ; [trivial |].
intro Hf ; apply h_neq ; clear -Hf.
apply Cadd_eq_reg_l with x ; rewrite Cadd_0_r ; symmetry ; assumption.
rewrite <- Hrew ; assumption.
intro H.
assert (H0 := derive_pt_eq_1 f x (df x) pr H).
intros eps eps_pos.
destruct (H0 eps eps_pos) as [alpha Halpha] ; ∃ alpha ; split.
exact (cond_pos alpha).
intros a [Ha a_bd] ; unfold D_x in Ha ; destruct Ha as [_ Ha] ;
assert (Temp : a - x ≠ 0) by (auto with complex).
generalize (Halpha (a - x) Temp a_bd); replace (x + (a - x)) with a.
intro; assumption.
auto with complex.
Qed.
Lemma derivable_pt_lim_D_in : ∀ f (df:C → C) (x:C),
D_in f df no_cond x ↔ derivable_pt_lim f x (df x).
Proof.
intros f df x ; split.
unfold D_in, limit1_in, limit_in ; simpl ; unfold C_dist ; intros H eps eps_pos.
destruct (H eps eps_pos) as [alpha [alpha_pos Halpha]].
∃ (mkposreal alpha alpha_pos) ; intros h h_neq h_bd ; fold C in h ;
assert (Hrew : h = (x + h) - x) by ring ; rewrite Hrew at 2 ;
apply Halpha ; unfold D_x, no_cond ; repeat split.
intro Hf ; apply h_neq ; clear -Hf.
apply Cadd_eq_reg_l with x ; rewrite Cadd_0_r ; symmetry ; assumption.
rewrite <- Hrew ; assumption.
intro.
unfold derivable_pt_lim in H.
unfold D_in in |- *; unfold limit1_in in |- *; unfold limit_in in |- *;
unfold dist in |- *; simpl in |- *; unfold R_dist in |- *;
intros.
elim (H eps H0); intros alpha H2; ∃ (pos alpha); split.
apply (cond_pos alpha).
intros.
elim H1; intros; unfold D_x in H3; elim H3; intros; cut (x0 - x ≠ 0).
intro; generalize (H2 (x0 - x) H7 H4); replace (x + (x0 - x)) with x0.
intro; assumption.
ring.
auto with complex.
Qed.
D_in f df no_cond x ↔ derive_pt f x pr = df x.
Proof.
intros f df x pr ; split.
unfold D_in, limit1_in, limit_in ; simpl ; unfold C_dist ; intros.
apply derive_pt_eq_0.
intros eps eps_pos ; destruct (H eps eps_pos) as [alpha [alpha_pos Halpha]] ;
∃ (mkposreal alpha alpha_pos) ; intros h h_neq h_bd.
fold C in h ; assert (Hrew : h = (x + h) - x) by ring ; rewrite Hrew at 2.
apply Halpha ; split.
unfold D_x, no_cond ; split ; [trivial |].
intro Hf ; apply h_neq ; clear -Hf.
apply Cadd_eq_reg_l with x ; rewrite Cadd_0_r ; symmetry ; assumption.
rewrite <- Hrew ; assumption.
intro H.
assert (H0 := derive_pt_eq_1 f x (df x) pr H).
intros eps eps_pos.
destruct (H0 eps eps_pos) as [alpha Halpha] ; ∃ alpha ; split.
exact (cond_pos alpha).
intros a [Ha a_bd] ; unfold D_x in Ha ; destruct Ha as [_ Ha] ;
assert (Temp : a - x ≠ 0) by (auto with complex).
generalize (Halpha (a - x) Temp a_bd); replace (x + (a - x)) with a.
intro; assumption.
auto with complex.
Qed.
Lemma derivable_pt_lim_D_in : ∀ f (df:C → C) (x:C),
D_in f df no_cond x ↔ derivable_pt_lim f x (df x).
Proof.
intros f df x ; split.
unfold D_in, limit1_in, limit_in ; simpl ; unfold C_dist ; intros H eps eps_pos.
destruct (H eps eps_pos) as [alpha [alpha_pos Halpha]].
∃ (mkposreal alpha alpha_pos) ; intros h h_neq h_bd ; fold C in h ;
assert (Hrew : h = (x + h) - x) by ring ; rewrite Hrew at 2 ;
apply Halpha ; unfold D_x, no_cond ; repeat split.
intro Hf ; apply h_neq ; clear -Hf.
apply Cadd_eq_reg_l with x ; rewrite Cadd_0_r ; symmetry ; assumption.
rewrite <- Hrew ; assumption.
intro.
unfold derivable_pt_lim in H.
unfold D_in in |- *; unfold limit1_in in |- *; unfold limit_in in |- *;
unfold dist in |- *; simpl in |- *; unfold R_dist in |- *;
intros.
elim (H eps H0); intros alpha H2; ∃ (pos alpha); split.
apply (cond_pos alpha).
intros.
elim H1; intros; unfold D_x in H3; elim H3; intros; cut (x0 - x ≠ 0).
intro; generalize (H2 (x0 - x) H7 H4); replace (x + (x0 - x)) with x0.
intro; assumption.
ring.
auto with complex.
Qed.
Lemma derivable_derive : ∀ f x (pr:derivable_pt f x),
∃ l, derive_pt f x pr = l.
Proof.
intros f x pr ; ∃ (proj1_sig pr) ; reflexivity.
Qed.
Theorem derivable_continuous_pt : ∀ f x,
derivable_pt f x → continuity_pt f x.
Proof.
intros f x Hf_deriv eps eps_pos ; destruct Hf_deriv as (l, Hl).
case (Ceq_or_neq_C0 l) ; intro Hl_0.
assert (eps_2_pos : eps / 2 > 0) by fourier ;
destruct (Hl (eps / 2)%R eps_2_pos) as ([alpha alpha_pos], Halpha) ;
∃ (Rmin (1/2) alpha) ; split ; [apply Rmin_pos ; fourier|] ;
intros x' [_ x'_bd] ; simpl ; simpl in Halpha ; unfold C_dist in ×.
pose (h := x' - x) ; replace x' with (x + h) by (unfold h ; intuition).
case (Ceq_or_neq_C0 h) ; intro Hh_0.
rewrite Hh_0, Cadd_0_r, Cminus_diag_eq ; [| reflexivity] ;
rewrite Cnorm_C0 ; assumption.
apply Rlt_trans with (Cnorm h×eps)%R.
apply Rle_lt_trans with (Cnorm (f (x + h)%C - f x) × (/ Cnorm h × Cnorm h))%R.
right ; field ; apply Rgt_not_eq ; apply Cnorm_pos_lt ; assumption.
unfold Rdiv ; rewrite <- Rmult_assoc ; rewrite <- Cnorm_inv, <- Cnorm_Cmult.
rewrite Rmult_comm ; apply Rmult_lt_compat_l.
apply Cnorm_pos_lt ; assumption.
replace ((f (x + h) - f x) × / h) with ((f (x + h) - f x) / h - l).
apply Rlt_trans with (eps / 2)%R ; [apply Halpha ; intuition | fourier].
subst ; apply Rlt_le_trans with (Rmin (1/2) alpha) ; [apply x'_bd | apply Rmin_r].
rewrite Hl_0 ; field ; assumption.
assumption.
apply Rlt_trans with ((Rmin (1/2) alpha) × eps)%R.
apply Rmult_lt_compat_r ; assumption.
apply Rle_lt_trans with (eps / 2)%R.
unfold Rdiv ; rewrite Rmult_comm ; apply Rmult_le_compat_l ; intuition ;
apply Rle_trans with (1 × /2)%R ; [apply Rmin_l | right ; field].
fourier.
assert (eps_2_pos : eps / 2 > 0) by fourier ;
destruct (Hl (eps / 2)%R eps_2_pos) as ([alpha alpha_pos], Halpha).
∃ (Rmin (eps / (2 × Cnorm l)) (Rmin (1/2) alpha)) ; split ; [apply Rmin_pos |].
unfold Rdiv ; rewrite Rinv_mult_distr ; repeat apply Rmult_lt_0_compat.
assumption.
fourier.
apply Rinv_0_lt_compat ; apply Cnorm_pos_lt ; assumption.
apply Rgt_not_eq ; fourier.
apply Rgt_not_eq ; apply Cnorm_pos_lt ; assumption.
apply Rmin_pos ; fourier.
intros x' [_ x'_bd] ; simpl ; unfold C_dist.
pose (h := x' - x) ; replace x' with (x+h) by (unfold h ; intuition) ;
case (Ceq_or_neq_C0 h) ; intro Hh_0.
rewrite Hh_0, Cadd_0_r, Cminus_diag_eq ; [| reflexivity] ;
rewrite Cnorm_C0 ; assumption.
apply Rlt_trans with (Cnorm h × eps + Cnorm h × Cnorm l )%R.
apply Rle_lt_trans with (Cnorm (f (x + h)%C - f x) × (/ Cnorm h × Cnorm h))%R.
right ; field ; apply Rgt_not_eq ; apply Cnorm_pos_lt ; assumption.
unfold Rdiv ; rewrite <- Rmult_assoc ; rewrite <- Cnorm_inv, <- Cnorm_Cmult.
apply Rle_lt_trans with ((Cnorm ((f (x + h)%C - f x) × / h) + (- Cnorm l + Cnorm l)) × Cnorm h)%R.
right ; field.
repeat rewrite Rmult_plus_distr_r.
replace (Cnorm l × Cnorm h)%R with (Cnorm h × Cnorm l)%R by (apply Rmult_comm).
rewrite <- Rplus_assoc ; apply Rplus_lt_compat_r.
apply Rle_lt_trans with (Cnorm ((f (x +h)%C - f x) / h - l)× Cnorm h)%R.
rewrite <- Rmult_plus_distr_r ; apply Rmult_le_compat_r ;
[apply Cnorm_pos | apply Cnorm_triang_rev_l].
rewrite Rmult_comm ; apply Rmult_lt_compat_l.
apply Cnorm_pos_lt ; assumption.
apply Rlt_trans with (eps /2)%R ; [apply Halpha | fourier].
assumption.
unfold h ; apply Rlt_le_trans with (Rmin (eps / (2 × Cnorm l)) (Rmin (1/2) alpha)) ;
[apply x'_bd |].
apply Rle_trans with (Rmin (1/2) alpha) ; apply Rmin_r.
assumption.
apply Rlt_trans with (eps / 2 + Cnorm h × Cnorm l)%R.
apply Rplus_lt_compat_r ; unfold h.
unfold Rdiv ; rewrite Rmult_comm ; apply Rmult_lt_compat_l ;
[assumption |].
apply Rlt_le_trans with (Rmin (eps / (2 × Cnorm l)) (Rmin (1 / 2) alpha)).
assumption.
apply Rle_trans with (Rmin (1/2) alpha) ; [apply Rmin_r | apply Rle_trans with (1/2)%R ;
[apply Rmin_l | right ; field]].
apply Rlt_le_trans with (eps / 2 + eps / 2)%R ; [apply Rplus_lt_compat_l | right ; field].
replace (eps / 2)%R with ((eps / (2 × Cnorm l)) × Cnorm l)%R
by (field ; apply Cnorm_no_R0 ; assumption).
apply Rmult_lt_compat_r.
apply Cnorm_pos_lt ; assumption.
unfold h ; apply Rlt_le_trans with (Rmin (eps / (2 × Cnorm l)) (Rmin (1 / 2) alpha)).
apply x'_bd.
apply Rmin_l.
Qed.
Theorem derivable_continuous : ∀ f, derivable f → continuity f.
Proof.
unfold derivable, continuity in |- *; intros f X x.
apply (derivable_continuous_pt f x (X x)).
Qed.
∃ l, derive_pt f x pr = l.
Proof.
intros f x pr ; ∃ (proj1_sig pr) ; reflexivity.
Qed.
Theorem derivable_continuous_pt : ∀ f x,
derivable_pt f x → continuity_pt f x.
Proof.
intros f x Hf_deriv eps eps_pos ; destruct Hf_deriv as (l, Hl).
case (Ceq_or_neq_C0 l) ; intro Hl_0.
assert (eps_2_pos : eps / 2 > 0) by fourier ;
destruct (Hl (eps / 2)%R eps_2_pos) as ([alpha alpha_pos], Halpha) ;
∃ (Rmin (1/2) alpha) ; split ; [apply Rmin_pos ; fourier|] ;
intros x' [_ x'_bd] ; simpl ; simpl in Halpha ; unfold C_dist in ×.
pose (h := x' - x) ; replace x' with (x + h) by (unfold h ; intuition).
case (Ceq_or_neq_C0 h) ; intro Hh_0.
rewrite Hh_0, Cadd_0_r, Cminus_diag_eq ; [| reflexivity] ;
rewrite Cnorm_C0 ; assumption.
apply Rlt_trans with (Cnorm h×eps)%R.
apply Rle_lt_trans with (Cnorm (f (x + h)%C - f x) × (/ Cnorm h × Cnorm h))%R.
right ; field ; apply Rgt_not_eq ; apply Cnorm_pos_lt ; assumption.
unfold Rdiv ; rewrite <- Rmult_assoc ; rewrite <- Cnorm_inv, <- Cnorm_Cmult.
rewrite Rmult_comm ; apply Rmult_lt_compat_l.
apply Cnorm_pos_lt ; assumption.
replace ((f (x + h) - f x) × / h) with ((f (x + h) - f x) / h - l).
apply Rlt_trans with (eps / 2)%R ; [apply Halpha ; intuition | fourier].
subst ; apply Rlt_le_trans with (Rmin (1/2) alpha) ; [apply x'_bd | apply Rmin_r].
rewrite Hl_0 ; field ; assumption.
assumption.
apply Rlt_trans with ((Rmin (1/2) alpha) × eps)%R.
apply Rmult_lt_compat_r ; assumption.
apply Rle_lt_trans with (eps / 2)%R.
unfold Rdiv ; rewrite Rmult_comm ; apply Rmult_le_compat_l ; intuition ;
apply Rle_trans with (1 × /2)%R ; [apply Rmin_l | right ; field].
fourier.
assert (eps_2_pos : eps / 2 > 0) by fourier ;
destruct (Hl (eps / 2)%R eps_2_pos) as ([alpha alpha_pos], Halpha).
∃ (Rmin (eps / (2 × Cnorm l)) (Rmin (1/2) alpha)) ; split ; [apply Rmin_pos |].
unfold Rdiv ; rewrite Rinv_mult_distr ; repeat apply Rmult_lt_0_compat.
assumption.
fourier.
apply Rinv_0_lt_compat ; apply Cnorm_pos_lt ; assumption.
apply Rgt_not_eq ; fourier.
apply Rgt_not_eq ; apply Cnorm_pos_lt ; assumption.
apply Rmin_pos ; fourier.
intros x' [_ x'_bd] ; simpl ; unfold C_dist.
pose (h := x' - x) ; replace x' with (x+h) by (unfold h ; intuition) ;
case (Ceq_or_neq_C0 h) ; intro Hh_0.
rewrite Hh_0, Cadd_0_r, Cminus_diag_eq ; [| reflexivity] ;
rewrite Cnorm_C0 ; assumption.
apply Rlt_trans with (Cnorm h × eps + Cnorm h × Cnorm l )%R.
apply Rle_lt_trans with (Cnorm (f (x + h)%C - f x) × (/ Cnorm h × Cnorm h))%R.
right ; field ; apply Rgt_not_eq ; apply Cnorm_pos_lt ; assumption.
unfold Rdiv ; rewrite <- Rmult_assoc ; rewrite <- Cnorm_inv, <- Cnorm_Cmult.
apply Rle_lt_trans with ((Cnorm ((f (x + h)%C - f x) × / h) + (- Cnorm l + Cnorm l)) × Cnorm h)%R.
right ; field.
repeat rewrite Rmult_plus_distr_r.
replace (Cnorm l × Cnorm h)%R with (Cnorm h × Cnorm l)%R by (apply Rmult_comm).
rewrite <- Rplus_assoc ; apply Rplus_lt_compat_r.
apply Rle_lt_trans with (Cnorm ((f (x +h)%C - f x) / h - l)× Cnorm h)%R.
rewrite <- Rmult_plus_distr_r ; apply Rmult_le_compat_r ;
[apply Cnorm_pos | apply Cnorm_triang_rev_l].
rewrite Rmult_comm ; apply Rmult_lt_compat_l.
apply Cnorm_pos_lt ; assumption.
apply Rlt_trans with (eps /2)%R ; [apply Halpha | fourier].
assumption.
unfold h ; apply Rlt_le_trans with (Rmin (eps / (2 × Cnorm l)) (Rmin (1/2) alpha)) ;
[apply x'_bd |].
apply Rle_trans with (Rmin (1/2) alpha) ; apply Rmin_r.
assumption.
apply Rlt_trans with (eps / 2 + Cnorm h × Cnorm l)%R.
apply Rplus_lt_compat_r ; unfold h.
unfold Rdiv ; rewrite Rmult_comm ; apply Rmult_lt_compat_l ;
[assumption |].
apply Rlt_le_trans with (Rmin (eps / (2 × Cnorm l)) (Rmin (1 / 2) alpha)).
assumption.
apply Rle_trans with (Rmin (1/2) alpha) ; [apply Rmin_r | apply Rle_trans with (1/2)%R ;
[apply Rmin_l | right ; field]].
apply Rlt_le_trans with (eps / 2 + eps / 2)%R ; [apply Rplus_lt_compat_l | right ; field].
replace (eps / 2)%R with ((eps / (2 × Cnorm l)) × Cnorm l)%R
by (field ; apply Cnorm_no_R0 ; assumption).
apply Rmult_lt_compat_r.
apply Cnorm_pos_lt ; assumption.
unfold h ; apply Rlt_le_trans with (Rmin (eps / (2 × Cnorm l)) (Rmin (1 / 2) alpha)).
apply x'_bd.
apply Rmin_l.
Qed.
Theorem derivable_continuous : ∀ f, derivable f → continuity f.
Proof.
unfold derivable, continuity in |- *; intros f X x.
apply (derivable_continuous_pt f x (X x)).
Qed.
Lemma derivable_differentiable_pt_abs : ∀ f x l,
derivable_pt_abs f x l → ∀ v, differentiable_pt_abs f x v l.
Proof.
intros f x l Hl v v_neq eps eps_pos ;
destruct (Hl eps eps_pos) as [delta Hdelta] ;
assert (delta'_pos : (0 < delta / Cnorm v)%R).
apply Rlt_mult_inv_pos ; [apply delta |
apply Cnorm_pos_lt ; assumption].
pose (delta' := mkposreal (delta / Cnorm v)%R delta'_pos) ;
∃ delta' ; intros h h_neq h_ub ; apply Hdelta.
apply Cmult_integral_contrapositive_currified ;
[apply IRC_neq_0_compat |] ; assumption.
rewrite Cnorm_Cmult.
apply Rlt_le_trans with (delta' × Cnorm v)%R.
apply Rmult_lt_compat_r.
apply Cnorm_pos_lt ; assumption.
rewrite Cnorm_IRC_Rabs ; assumption.
unfold delta', Rdiv ; simpl ; rewrite Rmult_assoc, Rinv_l.
right ; field.
apply Cnorm_no_R0 ; assumption.
Qed.
Theorem derivable_differentiable_pt : ∀ f x,
derivable_pt f x → ∀ v, differentiable_pt f x v.
Proof.
intros f x [l Hl] v ; ∃ l ; apply derivable_differentiable_pt_abs ;
assumption.
Qed.
Lemma derivable_pt_lim_add : ∀ f1 f2 x l1 l2,
derivable_pt_lim f1 x l1 → derivable_pt_lim f2 x l2 →
derivable_pt_lim (f1 + f2) x (l1 + l2).
Proof.
intros f1 f2 x l1 l2 H H0.
apply uniqueness_step3.
assert (H1 := uniqueness_step2 _ _ _ H).
assert (H2 := uniqueness_step2 _ _ _ H0).
unfold plus_fct in |- ×.
cut
(∀ h,
(f1 (x + h) + f2 (x + h) - (f1 x + f2 x)) / h =
(f1 (x + h) - f1 x) / h + (f2 (x + h) - f2 x) / h).
intro H3 ; generalize
(limit_plus (fun h' ⇒ (f1 (x + h') - f1 x) / h')
(fun h' ⇒ (f2 (x + h') - f2 x) / h') (fun h ⇒ h ≠ 0) l1 l2 0 H1 H2).
intros H4 eps eps_pos.
elim (H4 eps eps_pos); intros x0 Hx0.
∃ x0.
destruct Hx0 as [x0_pos Hx0'].
split.
assumption.
intros; rewrite H3; apply Hx0'; assumption.
intro; unfold Cdiv ; ring.
Qed.
Lemma derivable_pt_lim_opp : ∀ f x l, derivable_pt_lim f x l →
derivable_pt_lim (- f) x (- l).
Proof.
intros f x l H.
apply uniqueness_step3.
assert (H1 := uniqueness_step2 _ _ _ H).
unfold opp_fct in |- × ;
cut (∀ h, (- f (x + h) - - f x) / h = - ((f (x + h) - f x) / h)).
intro.
generalize
(limit_opp (fun h ⇒ (f (x + h) - f x) / h) (fun h ⇒ h ≠ 0) l 0 H1).
unfold limit1_in in |- *; unfold limit_in in |- *; unfold dist in |- *;
simpl in |- *; unfold R_dist in |- *; intros.
elim (H2 eps H3); intros.
∃ x0.
elim H4; intros.
split.
assumption.
intros; rewrite H0; apply H6; assumption.
intro; unfold Cdiv in |- *; ring.
Qed.
Lemma derivable_pt_lim_minus : ∀ f1 f2 x l1 l2,
derivable_pt_lim f1 x l1 → derivable_pt_lim f2 x l2 →
derivable_pt_lim (f1 - f2) x (l1 - l2).
Proof.
intros.
apply uniqueness_step3.
assert (H1 := uniqueness_step2 _ _ _ H).
assert (H2 := uniqueness_step2 _ _ _ H0).
unfold minus_fct in |- ×.
cut
(∀ h,
(f1 (x + h) - f1 x) / h - (f2 (x + h) - f2 x) / h =
(f1 (x + h) - f2 (x + h) - (f1 x - f2 x)) / h).
intro.
generalize
(limit_minus (fun h' ⇒ (f1 (x + h') - f1 x) / h')
(fun h' ⇒ (f2 (x + h') - f2 x) / h') (fun h ⇒ h ≠ 0) l1 l2 0 H1 H2).
unfold limit1_in in |- *; unfold limit_in in |- *; unfold dist in |- *;
simpl in |- *; unfold R_dist in |- *; intros.
elim (H4 eps H5); intros.
∃ x0.
elim H6; intros.
split.
assumption.
intros; rewrite <- H3; apply H8; assumption.
intro; unfold Cdiv in |- *; ring.
Qed.
Lemma derivable_pt_lim_const : ∀ a x, derivable_pt_lim (fct_cte a) x 0.
Proof.
intros; unfold fct_cte, derivable_pt_lim in |- ×.
intros; ∃ (mkposreal 1 Rlt_0_1); intros; unfold Cminus in |- *;
rewrite Cadd_opp_r; unfold Cdiv in |- × ; rewrite Cmult_0_l;
rewrite Cadd_opp_r; rewrite Cnorm_C0; assumption.
Qed.
Lemma derivable_pt_lim_mult : ∀ f1 f2 x l1 l2,
derivable_pt_lim f1 x l1 →
derivable_pt_lim f2 x l2 →
derivable_pt_lim (f1 × f2) x (l1 × f2 x + f1 x × l2).
Proof.
intros.
assert (H1 := derivable_pt_lim_D_in f1 (fun y ⇒ l1) x).
elim H1; intros.
assert (H4 := H3 H).
assert (H5 := derivable_pt_lim_D_in f2 (fun y ⇒ l2) x).
elim H5; intros.
assert (H8 := H7 H0).
clear H1 H2 H3 H5 H6 H7.
assert
(H1 :=
derivable_pt_lim_D_in (f1 × f2)%F (fun y ⇒ l1 × f2 x + f1 x × l2) x).
elim H1; intros.
clear H1 H3.
apply H2.
unfold mult_fct in |- ×.
apply (Dmult no_cond (fun y ⇒ l1) (fun y ⇒ l2) f1 f2 x); assumption.
Qed.
Lemma derivable_pt_lim_scal : ∀ f a x l,
derivable_pt_lim f x l → derivable_pt_lim (fun x ⇒ a × f x) x (a × l).
Proof.
intros.
assert (H0 := derivable_pt_lim_const a x).
replace (mult_real_fct a f) with (fct_cte a × f)%F.
replace (a × l) with (0 × f x + a × l); [ idtac | ring ].
apply (derivable_pt_lim_mult (fct_cte a) f x 0 l); assumption.
unfold mult_real_fct, mult_fct, fct_cte in |- *; reflexivity.
Qed.
Lemma derivable_pt_lim_id : ∀ x:C, derivable_pt_lim id x C1.
Proof.
intro; unfold derivable_pt_lim in |- ×.
intros eps Heps; ∃ (mkposreal eps Heps); intros h H1 H2;
unfold id in |- *; replace ((x + h - x) / h - 1) with 0.
rewrite Cnorm_C0 ; assumption.
fold C in h.
replace (x + h - x) with h by ring.
replace (h / h) with 1.
unfold Cminus ; rewrite Cadd_opp_r ; reflexivity.
unfold Cdiv ; rewrite Cinv_r ; trivial.
Qed.
Lemma derivable_pt_lim_comp : ∀ f1 f2 (x l1 l2:C),
derivable_pt_lim f1 x l1 →
derivable_pt_lim f2 (f1 x) l2 → derivable_pt_lim (comp f2 f1) x (l2 × l1).
Proof.
intros; assert (H1 := derivable_pt_lim_D_in f1 (fun y:C ⇒ l1) x).
elim H1; intros.
assert (H4 := H3 H).
assert (H5 := derivable_pt_lim_D_in f2 (fun y:C ⇒ l2) (f1 x)).
elim H5; intros.
assert (H8 := H7 H0).
clear H1 H2 H3 H5 H6 H7.
assert (H1 := derivable_pt_lim_D_in (comp f2 f1)%F (fun y:C ⇒ l2 × l1) x).
elim H1; intros.
clear H1 H3; apply H2.
unfold comp in |- *;
cut
(D_in (fun x0:C ⇒ f2 (f1 x0)) (fun y:C ⇒ l2 × l1)
(Dgf no_cond no_cond f1) x →
D_in (fun x0:C ⇒ f2 (f1 x0)) (fun y:C ⇒ l2 × l1) no_cond x).
intro; apply H1.
rewrite Cmult_comm;
apply (Dcomp no_cond no_cond (fun y:C ⇒ l1) (fun y:C ⇒ l2) f1 f2 x);
assumption.
unfold Dgf, D_in, no_cond in |- *; unfold limit1_in in |- *;
unfold limit_in in |- *; unfold dist in |- *; simpl in |- *;
unfold R_dist in |- *; intros.
elim (H1 eps H3); intros.
∃ x0; intros; split.
elim H5; intros; assumption.
intros; elim H5; intros; apply H9; split.
unfold D_x in |- *; split.
split; trivial.
elim H6; intros; unfold D_x in H10; elim H10; intros; assumption.
elim H6; intros; assumption.
Qed.
Lemma derivable_pt_add : ∀ f1 f2 (x:C),
derivable_pt f1 x → derivable_pt f2 x → derivable_pt (f1 + f2) x.
Proof.
unfold derivable_pt in |- *; intros f1 f2 x X X0.
elim X; intros.
elim X0; intros.
∃ (x0 + x1).
apply derivable_pt_lim_add; assumption.
Qed.
Lemma derivable_pt_opp : ∀ f (x:C), derivable_pt f x → derivable_pt (- f) x.
Proof.
unfold derivable_pt in |- *; intros f x X.
elim X; intros.
∃ (- x0).
apply derivable_pt_lim_opp; assumption.
Qed.
Lemma derivable_pt_minus : ∀ f1 f2 (x:C),
derivable_pt f1 x → derivable_pt f2 x → derivable_pt (f1 - f2) x.
Proof.
unfold derivable_pt in |- *; intros f1 f2 x X X0.
elim X; intros.
elim X0; intros.
∃ (x0 - x1).
apply derivable_pt_lim_minus; assumption.
Qed.
Lemma derivable_pt_mult : ∀ f1 f2 (x:C),
derivable_pt f1 x → derivable_pt f2 x → derivable_pt (f1 × f2) x.
Proof.
unfold derivable_pt in |- *; intros f1 f2 x X X0.
elim X; intros.
elim X0; intros.
∃ (x0 × f2 x + f1 x × x1).
apply derivable_pt_lim_mult; assumption.
Qed.
Lemma derivable_pt_const : ∀ a x:C, derivable_pt (fct_cte a) x.
Proof.
intros; unfold derivable_pt in |- ×.
∃ 0.
apply derivable_pt_lim_const.
Qed.
Lemma derivable_pt_scal : ∀ f (a x:C), derivable_pt f x →
derivable_pt (mult_real_fct a f) x.
Proof.
unfold derivable_pt in |- *; intros f1 a x X.
elim X; intros.
∃ (a × x0).
apply derivable_pt_lim_scal; assumption.
Qed.
Lemma derivable_pt_id : ∀ x:C, derivable_pt id x.
Proof.
unfold derivable_pt in |- *; intro.
∃ 1.
apply derivable_pt_lim_id.
Qed.
Lemma derivable_add : ∀ f1 f2,
derivable f1 → derivable f2 → derivable (f1 + f2).
Proof.
intros f1 f2 Hf1 Hf2 z ; apply derivable_pt_add ; intuition.
Qed.
Lemma derivable_opp : ∀ f, derivable f → derivable (- f).
Proof.
intros f1 Hf1 z ; apply derivable_pt_opp ; intuition.
Qed.
Lemma derivable_minus : ∀ f1 f2,
derivable f1 → derivable f2 → derivable (f1 - f2).
Proof.
intros f1 f2 Hf1 Hf2 z ; apply derivable_pt_minus ; intuition.
Qed.
Lemma derivable_mult : ∀ f1 f2,
derivable f1 → derivable f2 → derivable (f1 × f2).
Proof.
intros f1 f2 Hf1 Hf2 z ; apply derivable_pt_mult ; intuition.
Qed.
Lemma derivable_const : ∀ a, derivable (fct_cte a).
Proof.
intros a z ; apply derivable_pt_const.
Qed.
Lemma derivable_scal : ∀ f a, derivable f →
derivable (mult_real_fct a f).
Proof.
intros f a Hf z ; apply derivable_pt_scal ; intuition.
Qed.
Lemma derivable_id : derivable id.
Proof.
intro z ; apply derivable_pt_id.
Qed.
Theorem fully_differentiable_pt_not_derivable_pt :
(∀ f x, fully_differentiable_pt f x → derivable_pt f x) → False.
Proof.
intro H.
assert (Main : ∀ (x y : R), differentiable_pt_abs (fun z1 ⇒ (Cre z1 × Cre z1 +
Cim z1 × Cim z1)%R) 1 (x +i y) (2 × x / (x +i y))).
intros x y v_neq eps eps_pos.
pose (delta := (eps / Cnorm (x +i y))%R) ; assert (delta_pos : 0 < delta).
unfold Rdiv ; apply Rlt_mult_inv_pos ; [| apply Cnorm_pos_lt] ; assumption.
∃ (mkposreal delta delta_pos) ; intros h h_neq h_bd ; simpl.
repeat rewrite Rmult_0_l ; repeat rewrite Rminus_0_r ; repeat rewrite Rplus_0_r ;
repeat rewrite Rplus_0_l.
apply Rle_lt_trans with (Cnorm (h × (h × (x ^ 2) + h × (y ^ 2) + 2 × x)%R / (h × (x, y)) - 2 × x / (x, y))).
right ; apply Cnorm_eq_compat.
unfold Cminus ; apply Cadd_eq_compat_r ; apply Cmult_eq_compat_r.
rewrite Rmult_plus_distr_l ; repeat rewrite Rmult_plus_distr_r.
repeat rewrite Rmult_1_r ; repeat rewrite Rmult_1_l.
apply (proj1 (Ceq _ _)) ; split ; simpl ; ring.
apply Rle_lt_trans with (Cnorm ((h × x ^ 2 + h × y ^ 2 + 2 × x)%R / (x, y) - 2 × x / (x, y))).
right ; apply Cnorm_eq_compat.
apply Cadd_eq_compat_r.
rewrite Cmult_comm ; unfold Cdiv ; repeat rewrite Cmult_assoc ;
apply Cmult_eq_compat_l ; field ; split ; [| apply IRC_neq_compat] ; assumption.
apply Rle_lt_trans with (Cnorm ((h × x ^ 2 + h × y ^ 2)%R / (x, y))).
right ; apply Cnorm_eq_compat ; apply (proj1 (Ceq _ _)) ; split ; simpl ; ring.
rewrite <- Rmult_plus_distr_l ; unfold Cdiv ; rewrite Cmult_IRC_Rmult ;
repeat rewrite Cnorm_Cmult.
apply Rlt_le_trans with (eps × Cnorm_sqr (x, y) × (/ Cnorm (x, y)) ^ 2)%R.
simpl ; repeat rewrite Rmult_1_r ; rewrite <- Rmult_assoc, Cnorm_inv.
apply Rmult_lt_compat_r.
apply Rinv_0_lt_compat ; apply Cnorm_pos_lt ; assumption.
replace (Cnorm_sqr (x, y))%R with (Cnorm (x × x + y × y)%R).
apply Rlt_le_trans with (eps × / Cnorm (x, y)× Cnorm (x × x + y × y)%R)%R.
apply Rmult_lt_compat_r.
apply Cnorm_pos_lt ; intro Hf ; apply v_neq.
apply HC0_norm_R0.
unfold Cnorm_sqr ; simpl.
destruct (proj2 (Ceq _ _) Hf) as [Hf' _] ; apply Hf'.
rewrite Cnorm_IRC_Rabs ; apply h_bd.
right ; field.
apply Cnorm_no_R0 ; assumption.
unfold Cnorm_sqr ; rewrite Cnorm_IRC_Rabs, Rabs_right ; [reflexivity |].
apply Rle_ge ; apply Cnorm_sqr_pos.
assumption.
right ; rewrite <- Rmult_1_r, Rmult_assoc ; apply Rmult_eq_compat_l.
unfold Cnorm, Cnorm_sqr.
simpl.
rewrite Rmult_1_r, <- Rinv_mult_distr, sqrt_sqrt, Rinv_r.
reflexivity.
apply Rgt_not_eq.
apply Cnorm_sqr_pos_lt ; assumption.
apply Cnorm_sqr_pos.
apply Rgt_not_eq ; apply sqrt_lt_R0 ; apply Cnorm_sqr_pos_lt ; assumption.
apply Rgt_not_eq ; apply sqrt_lt_R0 ; apply Cnorm_sqr_pos_lt ; assumption.
assert (Main2 : fully_differentiable_pt Cnorm_sqr 1).
intros v ; unfold Cnorm_sqr ; destruct v as [x y] ; ∃ (2 × x / (x, y)) ;
apply Main.
assert (Main3 : derivable_pt Cnorm_sqr C1 → False).
intros [l Hl].
assert (H1 := derivable_differentiable_pt_abs Cnorm_sqr 1 l Hl (0,1)%R).
assert (H1' := Main R0 R1).
assert (H2 := derivable_differentiable_pt_abs Cnorm_sqr 1 l Hl (1,0)%R).
assert (H2' := Main R1 R0).
unfold differentiable_pt_abs in ×.
assert (H1_neq : (R0, R1) ≠ 0).
apply HintC0_neq_R0_neq ; right ; simpl ; apply Rgt_not_eq ; apply Rlt_0_1.
assert (H2_neq : (R1, R0) ≠ 0).
apply HintC0_neq_R0_neq ; left ; simpl ; apply Rgt_not_eq ; apply Rlt_0_1.
assert (Hf1 := Canalysis_diff.uniqueness_limite _ _ _ _ _ H1_neq H1 H1').
assert (Hf2 := Canalysis_diff.uniqueness_limite _ _ _ _ _ H2_neq H2 H2').
subst.
unfold Cdiv in Hf2 ; repeat rewrite Cmult_assoc in Hf2.
assert (Hneq : IRC 2 ≠ IRC 0) by (apply IRC_neq_compat ; apply Rgt_not_eq ; fourier) ;
assert (T := Cmult_eq_reg_l _ _ _ Hneq Hf2).
clear -T H1_neq H2_neq.
do 2 rewrite Cinv_rew in T.
destruct (proj2 (Ceq _ _) T) as [H _] ; clear T.
simpl in H ; ring_simplify in H.
repeat rewrite Rmult_0_l in H ; repeat rewrite Rmult_1_l in H ;
rewrite Rplus_0_r, Rinv_1 in H.
fourier.
assumption.
assumption.
assumption.
apply Main3 ; apply H ; apply Main2.
Qed.
Theorem MVT_Cre : ∀ (f : C → C) (z h : C)
(f_deriv : ∀ (t : R), interval 0 1 t → derivable_pt f (z + t×h)), h ≠ 0 →
∃ u : R, ∃ u_in_I : interval 0 1 u,
Cre ((f (z + h) - f z) / h) = Cre (derive_pt f (z + u × h) (f_deriv u u_in_I)).
Proof.
intros f z h f_deriv h_neq.
pose (H := fun (t : R) ⇒ Cre ((f (z + t×h) - f z) / h)).
assert (H0_0 : (H 0 = 0)%R).
unfold H ; unfold Cminus, Cdiv ; rewrite Cmult_0_l, Cadd_0_r, Cadd_opp_r, Cmult_0_l ; reflexivity.
assert (H1_d : H R1 = Cre ((f (z + h) - f z) / h)).
unfold H ; rewrite Cmult_1_l ; reflexivity.
assert (H_deriv : ∀ (t:R) (t_in : interval 0 1 t),
Ranalysis_def.derivable_pt_lim_in (interval 0 1) H t (Cre (derive_pt f (z + t × h) (f_deriv t t_in)))).
{ intros t t_in ; destruct (f_deriv t t_in) as [f' Hf'] ;
intros eps eps_pos ; destruct (Hf' _ eps_pos) as [delta Hdelta].
pose (delta' := (delta / Cnorm h)%R) ; assert (delta'_pos : 0 < delta').
unfold delta', Rdiv ; apply Rlt_mult_inv_pos ; [destruct delta | apply Cnorm_pos_lt] ;
assumption.
∃ delta' ; split ; [assumption |].
simpl ; intros u [[u_in ut_neq] u_bd] ;
replace (Ranalysis_def.growth_rate H t u)
with (Cre (growth_rate f (z + t × h) (z + u × h))).
+ unfold R_dist ; rewrite Cre_minus_compat ; eapply Rle_lt_trans.
- eapply Cre_le_Cnorm.
- unfold growth_rate.
replace (z + IRC u × h - (z + IRC t × h)) with (IRC (u - t) × h).
replace (IRC u × h) with (IRC t × h + IRC (u - t) × h).
rewrite <- Cadd_assoc ; apply Hdelta.
× apply Cmult_integral_contrapositive_currified.
apply IRC_neq_compat, Rminus_eq_contra ; symmetry ; assumption.
assumption.
× rewrite Cnorm_Cmult, Cnorm_IRC_Rabs ; apply Rlt_le_trans with (delta' × Cnorm h)%R.
apply Rmult_lt_compat_r ; [apply Cnorm_pos_lt |] ; assumption.
unfold delta', Rdiv ; rewrite Rmult_assoc, Rinv_l, Rmult_1_r.
reflexivity.
apply Rgt_not_eq, Cnorm_pos_lt ; assumption.
× rewrite <- IRC_minus_compat ; ring.
× rewrite <- IRC_minus_compat ; ring.
+ unfold growth_rate, Ranalysis_def.growth_rate, H.
rewrite Cre_minus_compat, <- Cre_div_compat.
rewrite <- IRC_minus_compat ; apply Cre_eq_compat ; field ; repeat split.
assumption.
rewrite IRC_minus_compat ; apply IRC_neq_compat, Rminus_eq_contra ; symmetry ; assumption.
ring_simplify (z + IRC u × h - (z + IRC t × h)) ; rewrite Cmult_comm, <- Cmult_minus_distr_l.
apply Cmult_integral_contrapositive_currified.
assumption.
rewrite IRC_minus_compat ; apply IRC_neq_compat, Rminus_eq_contra ; symmetry ; assumption.
apply Rminus_eq_contra ; symmetry ; assumption.
}
assert (H_deriv2 : derivable_open_interval 0 1 H).
intros a a_in ;
∃ (Cre (derive_pt f (z + a × h) (f_deriv a (open_interval_interval _ _ _ a_in)))).
eapply derivable_pt_lim_in_contravariant, H_deriv.
unfold included ; apply open_interval_interval ; assumption.
assert (id_deriv : derivable_open_interval 0 1 Ranalysis1.id).
apply derivable_in_id.
assert (H_cont : Ranalysis_def.continuity_interval 0 1 H).
apply derivable_in_continuity_in ; intros x x_in ;
eexists ; apply (H_deriv _ x_in).
assert (id_cont : Ranalysis_def.continuity_interval 0 1 Ranalysis1.id).
apply derivable_in_continuity_in, derivable_in_id.
destruct (Ranalysis_MVT.MVT H (Ranalysis1.id) 0 1 H_deriv2 id_deriv Rlt_0_1 H_cont id_cont) as [c [c_in Hc]] ;
∃ c ; ∃ (open_interval_interval _ _ _ c_in).
assert (Hrew := Rminus_0_r (H R1)) ; rewrite <- H0_0 in Hrew.
rewrite <- H1_d, <- Hrew ; clear Hrew.
unfold Ranalysis1.id in Hc ; rewrite Rminus_0_r, Rmult_1_l in Hc.
rewrite derive_open_interval_unfold with (f := fun x ⇒ x) (c_in := c_in) in Hc.
rewrite derive_pt_open_interval_id, Rmult_1_r in Hc ; [| assumption].
rewrite derive_open_interval_unfold with (f := H) (c_in := c_in) in Hc.
erewrite derivable_pt_lim_derive_pt_open_interval in Hc.
rewrite <- Hc.
reflexivity.
assumption.
apply derivable_pt_lim_in_contravariant with (interval 0 1), H_deriv.
apply included_open_interval_interval.
Qed.
Theorem MVT_Cim : ∀ (f : C → C) (z h : C)
(f_deriv : ∀ (t : R), interval 0 1 t → derivable_pt f (z + t×h)), h ≠ 0 →
∃ u : R, ∃ u_in_I : interval 0 1 u, Cim ((f (z + h) - f z) / h) = Cim (derive_pt f (z + u × h) (f_deriv u u_in_I)).
Proof.
intros f z h f_deriv h_neq.
pose (H := fun (t : R) ⇒ Cim ((f (z + t×h) - f z) / h)).
assert (H0_0 : (H 0 = 0)%R).
unfold H ; unfold Cminus, Cdiv ; rewrite Cmult_0_l, Cadd_0_r, Cadd_opp_r, Cmult_0_l ; reflexivity.
assert (H1_d : H R1 = Cim ((f (z + h) - f z) / h)).
unfold H ; rewrite Cmult_1_l ; reflexivity.
assert (H_deriv : ∀ (t:R) (t_in : interval 0 1 t),
Ranalysis_def.derivable_pt_lim_in (interval 0 1) H t (Cim (derive_pt f (z + t × h) (f_deriv t t_in)))).
{ intros t t_in ; destruct (f_deriv t t_in) as [f' Hf'] ;
intros eps eps_pos ; destruct (Hf' _ eps_pos) as [delta Hdelta].
pose (delta' := (delta / Cnorm h)%R) ; assert (delta'_pos : 0 < delta').
unfold delta', Rdiv ; apply Rlt_mult_inv_pos ; [destruct delta | apply Cnorm_pos_lt] ;
assumption.
∃ delta' ; split ; [assumption |].
simpl ; intros u [[u_in ut_neq] u_bd] ;
replace (Ranalysis_def.growth_rate H t u)
with (Cim (growth_rate f (z + t × h) (z + u × h))).
+ unfold R_dist ; rewrite Cim_minus_compat ; eapply Rle_lt_trans.
- eapply Cim_le_Cnorm.
- unfold growth_rate.
replace (z + IRC u × h - (z + IRC t × h)) with (IRC (u - t) × h).
replace (IRC u × h) with (IRC t × h + IRC (u - t) × h).
rewrite <- Cadd_assoc ; apply Hdelta.
× apply Cmult_integral_contrapositive_currified.
apply IRC_neq_compat, Rminus_eq_contra ; symmetry ; assumption.
assumption.
× rewrite Cnorm_Cmult, Cnorm_IRC_Rabs ; apply Rlt_le_trans with (delta' × Cnorm h)%R.
apply Rmult_lt_compat_r ; [apply Cnorm_pos_lt |] ; assumption.
unfold delta', Rdiv ; rewrite Rmult_assoc, Rinv_l, Rmult_1_r.
reflexivity.
apply Rgt_not_eq, Cnorm_pos_lt ; assumption.
× rewrite <- IRC_minus_compat ; ring.
× rewrite <- IRC_minus_compat ; ring.
+ unfold growth_rate, Ranalysis_def.growth_rate, H.
rewrite Cim_minus_compat, <- Cim_div_compat.
rewrite <- IRC_minus_compat ; apply Cim_eq_compat ; field ; repeat split.
assumption.
rewrite IRC_minus_compat ; apply IRC_neq_compat, Rminus_eq_contra ; symmetry ; assumption.
ring_simplify (z + IRC u × h - (z + IRC t × h)) ; rewrite Cmult_comm, <- Cmult_minus_distr_l.
apply Cmult_integral_contrapositive_currified.
assumption.
rewrite IRC_minus_compat ; apply IRC_neq_compat, Rminus_eq_contra ; symmetry ; assumption.
apply Rminus_eq_contra ; symmetry ; assumption.
}
assert (H_deriv2 : derivable_open_interval 0 1 H).
intros a a_in ;
∃ (Cim (derive_pt f (z + a × h) (f_deriv a (open_interval_interval _ _ _ a_in)))).
eapply derivable_pt_lim_in_contravariant, H_deriv.
unfold included ; apply open_interval_interval ; assumption.
assert (id_deriv : derivable_open_interval 0 1 Ranalysis1.id).
apply derivable_in_id.
assert (H_cont : Ranalysis_def.continuity_interval 0 1 H).
apply derivable_in_continuity_in ; intros x x_in ;
eexists ; apply (H_deriv _ x_in).
assert (id_cont : Ranalysis_def.continuity_interval 0 1 Ranalysis1.id).
apply derivable_in_continuity_in, derivable_in_id.
destruct (Ranalysis_MVT.MVT H (Ranalysis1.id) 0 1 H_deriv2 id_deriv Rlt_0_1 H_cont id_cont) as [c [c_in Hc]] ;
∃ c ; ∃ (open_interval_interval _ _ _ c_in).
assert (Hrew := Rminus_0_r (H R1)) ; rewrite <- H0_0 in Hrew.
rewrite <- H1_d, <- Hrew ; clear Hrew.
unfold Ranalysis1.id in Hc ; rewrite Rminus_0_r, Rmult_1_l in Hc.
rewrite derive_open_interval_unfold with (f := fun x ⇒ x) (c_in := c_in) in Hc.
rewrite derive_pt_open_interval_id, Rmult_1_r in Hc ; [| assumption].
rewrite derive_open_interval_unfold with (f := H) (c_in := c_in) in Hc.
erewrite derivable_pt_lim_derive_pt_open_interval in Hc.
rewrite <- Hc.
reflexivity.
assumption.
apply derivable_pt_lim_in_contravariant with (interval 0 1), H_deriv.
apply included_open_interval_interval.
Qed.