Library Coqtail.Reals.Wallis
Require Import Max.
Require Import Reals.
Require Import Rintegral.
Require Import Rintegral_usual.
Require Import Rintegral_tactic.
Require Import Fourier.
Require Import Rsequence_facts.
Require Import Rsequence_subsequence.
Require Import Rpser.
Require Import RTaylor.
Require Import MyRfunctions.
Require Import Rsequence_tactics.
Open Local Scope R_scope.
Section Wallis.
Local Coercion INR : nat >-> R.
Definition sin_n n := fun x ⇒ pow (sin x) n.
Lemma integrable_sin_n : ∀ n, Riemann_integrable (comp (fun x ⇒ pow x n) sin) 0 (PI/2).
Proof.
intro n.
apply RiemannInt_P6.
pose proof PI_RGT_0; fourier.
intros x Hx; apply continuity_pt_comp.
apply continuity_sin.
apply derivable_continuous; apply derivable_pow.
Qed.
Definition W_even n := ((PI/2)*(fact (2 × n))/(2 ^ (2 × n) × (fact n) ^2 )).
Definition W_odd n := ((2^(2×n) × (fact n) ^2)/(fact (S (2 × n)))).
Lemma Wallis_0 : Rint (sin_n 0) 0 (PI/2) (PI/2).
Proof.
apply Rint_eq_compat with (fct_cte 1).
trivial.
assert(Hrew : (PI/2) = (1*(PI/2 -0))) by ring.
apply Rint_eq with (1 × (PI / 2 - 0)).
auto with Rint.
ring.
Qed.
Lemma Wallis_1 : Rint (sin_n 1) 0 (PI/2) 1.
Proof.
unfold sin_n.
apply Rint_eq_compat with sin.
auto with ×.
assert(Heq : 1 = (cos 0 - cos (PI/2))).
rewrite cos_PI2, cos_0; ring.
apply Rint_eq with (cos 0 - cos (PI / 2)) ; auto with Rint.
Qed.
Recurrence formula
Lemma Wallis_formula : ∀ Wn n,
Rint (sin_n n) 0 (PI/2) Wn→
Rint (sin_n (S (S n))) 0 (PI/2) (Wn × (S n)/(S (S n))).
Proof.
intros Wn n H.
pose (RiemannInt (integrable_sin_n (S (S n)))) as W2n.
pose proof (Rint_RiemannInt_link _ _ _ (integrable_sin_n (S (S n)))) as HW2.
assert (W2n = (S n) × (Wn - W2n)) as Heq.
replace (S n × (Wn - W2n)) with
(comp (fun x ⇒ x ^ (S n)) sin (PI/2) *((- cos)%F (PI/2)) - comp (fun x ⇒ x ^ (S n)) sin 0 *((- cos)%F 0) - (-(S n) × (Wn - W2n))).
eapply Rint_parts with (f' := fun x ⇒ ((S n) × sin x ^ n)* cos x) (g' := sin).
left; apply PI2_RGT_0.
intros.
apply derivable_pt_lim_comp.
auto with Rcont.
apply derivable_pt_lim_pow.
intros.
replace (sin x) with (- - sin x) by ring.
auto with Rcont.
intros.
apply continuity_pt_mult.
apply continuity_pt_mult; auto with Rcont.
apply continuity_pt_const; intros u v; reflexivity.
reg.
auto with Rcont.
auto with Rcont.
apply Rint_eq_compat with (comp (fun x : R ⇒ x ^ S (S n)) sin).
intros; unfold comp, mult_fct; simpl; ring.
apply Rint_RiemannInt_link.
apply Rint_eq_compat with (fun x ⇒ (- S n) × (sin x ^ n - sin x ^ (S (S n)))).
intros.
unfold mult_fct, opp_fct.
rewrite Rmult_assoc.
replace (cos x × - cos x) with (-(1 - (sin x)^2)).
unfold Rsqr; simpl; ring.
replace ((sin x) ^ 2) with ((sin x)²) by (unfold Rsqr; ring).
rewrite <- (cos2 x); unfold Rsqr; ring.
apply Rint_scalar_mult_compat_l.
apply Rint_minus; trivial.
unfold opp_fct, comp;
rewrite cos_0, cos_PI2, sin_PI2, sin_0;
simpl; ring.
replace (Wn × S n / S (S n)) with (W2n).
trivial.
rewrite Rmult_comm.
replace W2n with (/(S (S n)) × (S (S n))* W2n).
replace Wn with ((Wn - W2n) + W2n) by ring.
rewrite Rmult_plus_distr_l.
rewrite <- Heq.
unfold Rdiv.
rewrite Rmult_comm with (r1 := (W2n + S n × W2n)).
rewrite Rmult_assoc.
apply Rmult_eq_compat_l.
simpl; ring.
field.
auto with ×.
Qed.
Lemma Wallis_even : ∀ n, Rint (sin_n (2 × n)) 0 (PI/2) (W_even n).
Proof.
unfold W_even.
induction n.
simpl; unfold Rsqr; field_simplify; apply Wallis_0.
apply Rint_eq_compat with (sin_n (S (S (2 × n)))).
intros; simpl;
replace (S (n + S (n + 0))) with (S (S (n + (n + 0)))) by auto;
reflexivity.
replace (PI / 2 × fact (2 × S n) / (2 ^ (2 × S n) × (fact (S n)) ^2)) with
((PI / 2 × fact (2 × n) / (2 ^ (2 × n) × (fact n)^2)) × S (2 × n) / (S (S (2 × n)))).
apply Wallis_formula; apply IHn.
replace (2 × S n)%nat with (S (S (2 × n))) by auto with ×.
repeat rewrite fact_simpl.
repeat rewrite <- tech_pow_Rmult.
unfold Rsqr.
replace (S (S (2×n))) with (2 × (S n))%nat by auto with ×.
repeat rewrite mult_INR.
replace (INR 2) with 2 by trivial; field.
repeat split.
apply not_0_INR; apply fact_neq_0.
auto with ×.
apply pow_nonzero; pose proof Rlt_R0_R2; intro; fourier.
Qed.
Lemma Wallis_odd : ∀ n, Rint (sin_n (S (2 × n))) 0 (PI/2) ((2^(2×n) × (fact n) ^2)/(fact (S (2 × n)))).
Proof.
unfold W_odd.
induction n.
simpl; replace (1 × (1 × (1×1)) / 1) with 1 by field; apply Wallis_1.
apply Rint_eq_compat with (sin_n (S (S (S (2 × n))))).
intros; simpl.
replace (n + S (n + 0))%nat with (S (n + (n + 0))) by auto;
reflexivity.
replace (2 ^ (2 × S n) × (fact (S n))^2 / fact (S (2 × S n))) with
((2 ^ (2 × n) × (fact n)^2 / fact (S (2 × n))) × (S (S (2 × n)))/(S (S (S (2 × n))))).
apply Wallis_formula; apply IHn.
replace (2 × S n)%nat with (S (S (2 × n))) by auto with ×.
repeat rewrite fact_simpl.
repeat rewrite <- tech_pow_Rmult.
unfold Rsqr.
replace (S (S (2×n))) with (2 × (S n))%nat by auto with ×.
repeat rewrite mult_INR.
replace (INR 2) with 2 by trivial; field.
repeat split;apply not_0_INR; try (auto with × ).
apply fact_neq_0.
Qed.
Lemma Wallis_odd_le_even : ∀ n, W_odd n ≤ W_even n.
Proof.
intro n.
apply (Rint_le_compat (sin_n (S (2 × n))) (sin_n (2 × n)) 0 (PI/2)).
left; apply PI2_RGT_0.
intros; unfold sin_n.
replace (sin u ^ (2 × n)) with (1 × sin u ^ (2 × n)) by ring.
rewrite <- tech_pow_Rmult.
apply Rmult_le_compat_r.
apply pow_le.
apply sin_ge_0; intuition; fourier.
pose proof (SIN_bound u); intuition.
apply Wallis_odd.
apply Wallis_even.
Qed.
Lemma Wallis_even_le_odd : ∀ n, W_even (S n) ≤ W_odd n.
Proof.
intro n.
apply (Rint_le_compat (sin_n (2 × (S n))) (sin_n (S (2 × n))) 0 (PI/2)).
left; apply PI2_RGT_0.
intros; unfold sin_n.
replace (2 × (S n))%nat with (S (S (2 × n))) by auto with ×.
replace (sin u ^ (S (2 × n))) with (1 × sin u ^ (S (2 × n))) by ring.
rewrite <- tech_pow_Rmult.
apply Rmult_le_compat_r.
apply pow_le.
apply sin_ge_0; intuition; fourier.
pose proof (SIN_bound u); intuition.
apply Wallis_even.
apply Wallis_odd.
Qed.
Lemma Wallis_maj : ∀ n : nat, (2×n/ (S (2 × n))) × (W_even n) ≤ W_odd n.
Proof.
intro n.
destruct n.
unfold W_even, W_odd, Rsqr.
simpl; field_simplify; fourier.
replace 2 with (INR 2) by trivial; rewrite <- mult_INR.
replace (2 × S n)%nat with (S (S (2 × n))) by auto with ×.
replace (W_odd (S n)) with (INR (S (S (2 × n))) / INR (S (S (S (2 × n)))) × W_odd n).
apply Rmult_le_compat_l.
unfold Rdiv.
repeat apply Rmult_le_pos; auto with ×.
apply Wallis_even_le_odd.
rewrite Rmult_comm.
unfold Rdiv.
rewrite <- Rmult_assoc.
eapply (Rint_uniqueness _ 0 (PI/2)).
apply Wallis_formula.
apply Wallis_odd.
replace (S (S (2 × n))) with (2 × (S n))%nat by auto with ×.
apply Wallis_odd.
Qed.
Lemma W_even_pos : ∀ n, 0 < W_even n.
Proof.
intro n.
unfold W_even, Rsqr, Rdiv.
repeat apply Rmult_lt_0_compat; try fourier.
now apply Rlt_le_trans with (7 / 8); fourier || apply pi2_int.
now apply INR_fact_lt_0.
repeat rewrite Rinv_mult_distr ; repeat apply Rmult_lt_0_compat.
rewrite Rinv_pow.
apply pow_lt ; fourier.
apply Rgt_not_eq ; fourier.
apply Rinv_0_lt_compat, pow_lt, INR_fact_lt_0.
apply Rgt_not_eq, pow_lt ; fourier.
apply Rgt_not_eq, pow_lt, INR_fact_lt_0.
Qed.
Lemma Wallis_bound : ∀ (n : nat), 2×n / (S(2 × n)) ≤ W_odd n / W_even n ≤ 1.
Proof.
intro n ; split.
apply Rle_trans with (2 × n / S (2 × n) × (W_even n / W_even n)).
right ; field ; split.
apply Rgt_not_eq ; apply W_even_pos.
apply not_0_INR ; discriminate.
unfold Rdiv ; rewrite <- Rmult_assoc ; apply Rmult_le_compat_r.
left ; apply Rinv_0_lt_compat ; apply W_even_pos.
apply Wallis_maj.
rewrite <- Rinv_r with (W_even n).
unfold Rdiv ; apply Rmult_le_compat_r.
left ; apply Rinv_0_lt_compat ; apply W_even_pos.
apply Wallis_odd_le_even.
apply Rgt_not_eq ; apply W_even_pos.
Qed.
Lemma Wallis_quotient_lim1 : Rseq_cv (fun n ⇒ W_odd n / W_even n) 1.
Proof.
apply Rseq_sandwich_theorem
with (Un := fun (n : nat) ⇒ 2 × n / (S (2 × n))) (Wn := fun n ⇒ 1).
apply Rseq_cv_eq_compat with (Un := fun n ⇒ 2 × n / (2 × n + 1)).
intros n.
rewrite S_INR; rewrite mult_INR; reflexivity.
apply Rseq_equiv_cv_div.
apply Rseq_equiv_sym.
apply Rseq_equiv_plus_little_O_compat_l.
apply Rseq_equiv_refl.
apply Rseq_little_O_Rmult_compat_r; [|intro H; fourier].
eapply Rseq_little_O_eq_compat
with (Un := Rseq_poly 0) (Vn := Rseq_poly 1).
intros n; unfold Rseq_poly; apply pow_O.
intros n; unfold Rseq_poly; apply pow_1.
apply Rseq_poly_little_O; constructor.
intros n; assert (H := pos_INR n); intros Hc; fourier.
apply Rseq_constant_cv.
apply Wallis_bound.
Qed.
Lemma Wallis_quotient :
∀ n, W_odd n / W_even n = (2×2 ^ (4×n) × (fact n) ^ 4)/(PI×fact (2 × n) × fact (S (2 × n))).
Proof.
intro n; unfold W_odd, W_even, Rsqr, Rdiv.
replace (2 ^ (4 × n)) with ((2 ^ (2 × n)) × (2 ^ (2 × n))).
field; repeat split.
apply not_0_INR; apply fact_neq_0.
apply not_0_INR; apply fact_neq_0.
apply PI_neq0.
apply not_0_INR; apply fact_neq_0.
apply pow_nonzero; intros H; fourier.
replace (4 × n)%nat with (2 × n + 2 × n)%nat by omega.
rewrite pow_add.
reflexivity.
Qed.
Lemma Rseq_cv_eq_compat1 : ∀ Un Vn l,
{m | ∀ n, (n ≥ m)%nat → Un n = Vn n} →
Rseq_cv Un l → Rseq_cv Vn l.
Proof.
intros Un Vn l Heq Hseq.
intros eps Heps.
destruct Heq as (m, Heq).
destruct (Hseq eps Heps) as (N, Hseq2).
∃ (max N m).
intros n Hn.
assert (Hm : (n ≥ m)%nat). apply le_trans with (max N m) ; intuition.
unfold R_dist in ×.
rewrite <- (Heq n) ; intuition.
apply Hseq2; intuition. apply le_trans with (max N m) ; intuition.
Qed.
Lemma sqrt_id : ∀ n : nat, (INR n ≠ 0)%R → sqrt (2 × n) / (2 × n) = /sqrt (2 × n).
Proof.
intros n H1.
rewrite <- (sqrt_sqrt (2 × n)) at 2.
field.
intro H. apply H1. apply Rmult_eq_reg_l with 2. rewrite Rmult_0_r. apply sqrt_eq_0 ; intuition.
apply Rmult_le_pos ; intuition. intro ; fourier.
apply Rmult_le_pos ; intuition.
Qed.
Lemma Rseq_equiv_eq : ∀ Un Vn,
{m | ∀ n, (n ≥ m)%nat → Un n = Vn n} → Un ¬ Vn.
Proof.
intros Un Vn Heq eps Heps.
destruct Heq as (N, Heq).
∃ N. intros n HN.
unfold Rseq_constant, Rseq_minus, Rseq_plus.
rewrite (Heq n).
ring_simplify (Vn n - Vn n).
rewrite Rabs_R0. apply Rmult_le_pos.
intuition.
apply Rabs_pos.
assumption.
Qed.
Lemma DL_sqrt_1 : ∀ Un, Rseq_cv Un 0 → (fun n ⇒ sqrt (1 + Un n) - 1) = o(1).
Proof.
intros Un Un0.
intros eps Heps.
destruct (Un0 eps Heps) as (N, HUn).
assert (H01 : 0 < 1) by fourier.
destruct (Un0 1 H01) as (N1, HUn1).
∃ (max N N1).
intros n HNmax.
unfold Rseq_constant. rewrite Rabs_R1. rewrite Rmult_1_r.
apply Rle_trans with (Rabs (Un n)).
apply sqrt_var_maj.
unfold R_dist in ×. left.
assert (HN : (n ≥ N1)%nat). apply le_trans with (max N N1) ; intuition.
generalize (HUn1 n HN) ; intros HU1.
rewrite Rminus_0_r in HU1. assumption.
left.
assert (HN : (n ≥ N)%nat). apply le_trans with (max N N1) ; intuition.
generalize (HUn n HN) ; intros HU1.
unfold R_dist in HU1.
rewrite Rminus_0_r in HU1. assumption.
Qed.
Lemma Rseq_cv_inv_INR : Rseq_cv (fun n ⇒ /INR (n + 1)) 0.
Proof.
generalize RinvN_cv. intros useful.
intros eps Heps.
destruct (useful eps Heps) as (N, H).
∃ N.
intros n Hn.
generalize (H n Hn). intros H1.
unfold pos in H1. simpl in H1.
rewrite plus_INR. apply H1.
Qed.
Lemma Rinv_plus : ∀ a b c : R, c ≠ 0 → (a + b) / c = a / c + (b / c).
Proof.
intros a b c d.
field ; apply d.
Qed.
Lemma Rinv_eq_1 : ∀ a, a ≠ 0 → a / a = 1.
Proof.
intros.
field ; assumption.
Qed.
Lemma pow_exp_ln : ∀ x n, 0 < x → x ^ n = exp (n × ln x).
Proof.
intros x n H.
induction n.
simpl. rewrite Rmult_0_l. rewrite exp_0. reflexivity.
rewrite S_INR. rewrite Rmult_plus_distr_r.
rewrite <- tech_pow_Rmult. rewrite exp_plus.
rewrite Rmult_1_l. rewrite exp_ln ; [ | apply H].
rewrite IHn. ring.
Qed.
Lemma Rseq_equiv_ln : ∀ Un, Rseq_cv Un 0 → (fun n ⇒ ln (1 + Un n)) ¬ Un.
Proof.
intros Un Hu.
destruct (Hu 1) as [M HM]; [fourier|].
apply Rseq_equiv_sym.
intros eps Heps.
assert (H1 : 0 < 1) by fourier.
destruct (Rpser_little_O_partial_sum _ Un 1 1 H1 Hu ln_plus_cv_radius eps Heps) as [N HN].
∃ (Max.max M N); intros n Hn.
unfold Rseq_minus; simpl.
pattern Un at 2; replace (Un n) with (Un n ^ 1) by field.
eapply Rle_trans; [right|apply HN].
simpl; rewrite ln_plus_taylor_sum.
rewrite Rabs_minus_sym.
apply f_equal; field.
replace (Un n) with (Un n - 0) by field; apply HM.
eapply le_trans; [apply Max.le_max_l|eassumption].
eapply le_trans; [apply Max.le_max_r|eassumption].
Qed.
Lemma Rseq_cv_inv_INR_0_1 : Rseq_cv (fun n ⇒ - / (2 × INR n + 1))%R 0%R.
Proof.
replace 0 with (-0)%R by intuition. apply Rseq_cv_opp_compat.
generalize RinvN_cv. intros useful.
intros eps Heps;
destruct (Rseq_cv_inv_INR eps Heps) as (N, Hun).
∃ N. intros n Hn.
generalize (Hun n Hn) ; intros Hun1.
apply Rle_lt_trans with (/INR (n + 1))%R.
unfold R_dist. rewrite Rminus_0_r. rewrite Rabs_pos_eq.
apply Rle_Rinv.
generalize (pos_INR n) ; intros ; rewrite plus_INR ; intuition.
generalize (pos_INR n) ; intros ; fourier.
rewrite plus_INR. simpl. apply Rplus_le_compat_r. replace (INR n)%R with ((INR n ) × 1)%R by ring. rewrite Rmult_comm. apply Rmult_le_compat.
intuition.
apply pos_INR.
intuition.
intuition.
left. apply Rinv_0_lt_compat. generalize (pos_INR n) ; intros ; fourier.
unfold R_dist in Hun1. rewrite Rminus_0_r in Hun1. rewrite Rabs_right in Hun1. apply Hun1.
left. apply Rgt_lt. apply Rinv_0_lt_compat. intuition.
Qed.
Lemma Rseq_equiv_continuity : ∀ Un Vn l f, continuity_pt f l →
f l ≠ 0 → Rseq_cv Un l → Rseq_cv Vn l →
(fun n : nat ⇒ f (Un n)) ¬ (fun n : nat ⇒ f (Vn n)).
Proof.
intros Un Vn l f Hcont H0 Hun Hvn.
apply Rseq_equiv_trans with (f l).
apply Rseq_cv_equiv_constant.
assumption.
apply Rseq_cv_continuity_compat ; [assumption | reg].
apply Rseq_equiv_sym.
apply Rseq_cv_equiv_constant.
assumption.
apply Rseq_cv_continuity_compat ; [assumption | reg].
Qed.
Lemma Wallis_quotient_lim2 : ∀ l,
l ≠ 0 →
(fun n ⇒ fact n) ¬ (fun n ⇒ (n /(exp 1)) ^ n × sqrt n × l) →
Rseq_cv (fun n ⇒ W_odd n / W_even n) (l^2/(2×PI)).
Proof.
intros l Hneq Hl.
apply Rseq_cv_eq_compat with (fun n ⇒ (2×2 ^ (4×n) × (fact n) ^ 4)/(PI×fact (2 × n) × fact (S (2 × n)))).
intro; rewrite Wallis_quotient; reflexivity.
assert (H2n : (fun n ⇒ fact (2 × n)) ¬ (fun n ⇒ (2 × n / exp 1) ^ (2 × n) × sqrt (2 × n) × l)).
assert (Hex : is_extractor (mult 2)).
intros n; omega.
pose (exist _ _ Hex) as db.
assert (Hrw1 : extracted db fact == (fun n ⇒ fact (2 × n))).
intros n; reflexivity.
assert (Hrw2 : extracted db (fun n ⇒ (n / exp 1) ^ n × sqrt n × l) == (fun n ⇒ (2 × n / exp 1) ^ (2 × n) × sqrt (2 × n) × l)).
intros n; unfold extracted. simpl.
repeat rewrite plus_INR; simpl.
replace (n + (n + 0)) with (2 × n) by field.
reflexivity.
eapply Rseq_equiv_eq_compat; [eassumption|eassumption|].
apply Rseq_equiv_subseq_compat with (Un := fact) (Vn := fun k : nat ⇒ (k / exp 1) ^ k × sqrt k × l) (phi := db).
assumption.
assert (H2n1 : (fun n : nat ⇒ fact (S(2×n))) ¬ (fun n : nat ⇒ (S(2×n) / exp 1) ^ (S(2×n)) × sqrt (S(2×n)) × l)).
assert (Hex : is_extractor (fun n ⇒ S (mult 2 n))).
intros n; omega.
pose (exist _ _ Hex) as db.
apply Rseq_equiv_eq_compat with (extracted db fact) (extracted db (fun n : nat ⇒ (n / exp 1) ^ n × sqrt n × l)).
intro n; unfold db; reflexivity.
intro n; unfold db; reflexivity.
apply Rseq_equiv_subseq_compat with (Un := fact) (Vn := fun k : nat ⇒ (k / exp 1) ^ k × sqrt k × l)(phi := db).
assumption.
apply Rseq_equiv_cv_constant.
Open Local Scope Rseq_scope.
apply Rseq_equiv_eq_compat with
(Un := 2 × (fun n ⇒ 2 ^ (4 × n)) × fact × fact × fact × fact ×
/ (PI × (fun n ⇒ fact (2 × n)) × (fun n ⇒ fact (S (2 × n))))) (Vn := (l^2 / (2 × PI))%R).
intro n; unfold Rseq_mult, Rseq_inv, Rdiv, Rseq_constant; ring.
intro; reflexivity.
apply Rseq_equiv_trans with
(2 × (fun n ⇒ 2 ^ (4 × n)) × ((fun n : nat ⇒ ((n / exp 1) ^ n × sqrt n × l)%R))*((fun n : nat ⇒ ((n / exp 1) ^ n × sqrt n × l)%R))*((fun n : nat ⇒ ((n / exp 1) ^ n × sqrt n × l)%R))*((fun n : nat ⇒ ((n / exp 1) ^ n × sqrt n × l)%R))*
/ (PI × (fun n : nat ⇒ ((2 × n / exp 1) ^ (2 × n) × sqrt (2 × n) × l)%R) × (fun n ⇒ (S (2 × n) / exp 1) ^ S (2 × n) × sqrt (S (2 × n)) × l)%R)).
repeat apply Rseq_equiv_mult_compat;
try apply Rseq_equiv_refl; try assumption.
apply Rseq_equiv_inv_compat.
∃ O. intros n Hn.
unfold Rseq_mult, Rseq_constant.
apply Rmult_integral_contrapositive ; split ;
[ apply Rmult_integral_contrapositive ; split ;
[ apply PI_neq0 | apply INR_fact_neq_0] | apply INR_fact_neq_0 ].
∃ (S O). intros n Hn; unfold Rseq_mult, Rseq_constant.
assert(H : {m | n = S m}). ∃ (pred n). intuition.
destruct H as (m, Subst).
rewrite Subst.
apply Rmult_integral_contrapositive ; split ;
[ apply Rmult_integral_contrapositive ; split ;
[ apply PI_neq0 | apply Rmult_integral_contrapositive ; split ;
[ apply Rmult_integral_contrapositive ; split ;
[ (apply pow_nonzero ; unfold Rdiv ; apply Rmult_integral_contrapositive ; split ;
[ apply Rmult_integral_contrapositive ; split ;
[ (intro ; fourier) | (apply not_0_INR ; intuition) ] | (apply Rinv_neq_0_compat ; generalize (exp_pos 1) ; intros ; intro ; fourier)])
| (intro H ; apply sqrt_eq_0 in H ; [ (apply Rmult_integral in H ; destruct H as [H|H] ; [ fourier | (generalize H ; apply not_0_INR ; intuition) ])
| apply Rmult_le_pos ; intuition ]) ]
| apply Hneq ] ] | apply Rmult_integral_contrapositive ; split ;
[ apply Rmult_integral_contrapositive ; split ;
[ (apply pow_nonzero ; unfold Rdiv ; apply Rmult_integral_contrapositive ; split ;
[ apply not_0_INR ; intuition | (apply Rinv_neq_0_compat ; generalize (exp_pos 1) ; intros ; intro ; fourier) ])
| (intro H ; apply sqrt_eq_0 in H ; [ (apply not_0_INR in H ; intuition )
| apply pos_INR ])
] | apply Hneq ] ].
apply Rseq_equiv_mult_compat.
apply Rseq_equiv_mult_compat.
apply Rseq_equiv_refl.
assumption.
assumption.
clear Hl H2n H2n1.
apply Rseq_cv_equiv_constant.
unfold Rdiv.
apply Rmult_integral_contrapositive ; split .
apply pow_nonzero; assumption.
apply Rinv_neq_0_compat.
apply Rmult_integral_contrapositive; split.
intro ; fourier.
apply PI_neq0.
unfold Rseq_constant, Rseq_mult, Rseq_div, Rseq_plus, Rseq_minus, Rseq_inv.
apply Rseq_cv_eq_compat1 with
(fun n:nat ⇒ (sqrt (2 × n) / sqrt (S (2 × n))) × (Rsqr l / PI × exp 1) × ((2 × n) / S (2 × n)) ^ (S (2 × n)) × /2)%R.
∃ (S O). intros n Hn.
assert(H : {m | n = S m}). ∃ (pred n). intuition.
destruct H as (m, Subst).
unfold Rseq_constant.
unfold Rdiv.
ring_simplify.
replace (sqrt n ^ 4) with (n ^ 2) by (rewrite <- (sqrt_sqrt n) at 1 ; [ring | intuition]).
repeat rewrite Rpow_mult_distr.
repeat rewrite <- pow_mult.
repeat rewrite Rinv_mult_distr.
replace (2 ^ (4 × n))%R with (2 ^ (2 × n) × 2 ^ (2 × n))%R by (repeat rewrite pow_mult ;
rewrite <- Rpow_mult_distr ; replace (2 ^ 2 × 2 ^ 2)%R with (2 ^ 4)%R by (unfold pow ; ring) ; ring).
rewrite (mult_comm n 4).
replace (n ^ (4 × n))%R with (n ^ (2 × n) × n ^ (2 × n))%R by
(rewrite <- pow_add ; ring_simplify (2 × n + 2 × n)%nat ; ring).
replace ((/exp 1) ^ (4 × n))%R with ((/exp 1) ^ (2 × n) × (/exp 1) ^ (2 × n))%R by
(rewrite <- pow_add ; ring_simplify (2 × n + 2 × n)%nat ; ring).
repeat rewrite Rinv_pow. rewrite Rinv_involutive.
rewrite <- tech_pow_Rmult with (exp 1) (2 × n)%nat.
rewrite <- (Rinv_pow (exp 1) _).
do 2 rewrite <- tech_pow_Rmult.
replace (/sqrt (2 × n))%R with (sqrt (2 × n) / (2 × n))%R by (apply sqrt_id ; inversion Hn ; [intuition | apply not_0_INR ; intuition]).
unfold Rsqr. unfold Rdiv.
repeat rewrite <- Rinv_pow. field.
split. assumption.
split. intro H. apply sqrt_eq_0 in H. apply not_0_INR in H. assumption.
intuition.
intuition.
split. apply pow_nonzero. apply not_0_INR. intuition.
split. apply not_0_INR. intuition.
split. apply pow_nonzero. apply not_0_INR. intuition.
split. apply pow_nonzero. intro. fourier.
split. apply PI_neq0.
apply pow_nonzero. intro. generalize (exp_pos 1) ; intros ; fourier.
apply not_0_INR. intuition.
intro ; fourier.
apply not_0_INR. intuition.
intro. generalize (exp_pos 1) ; intros ; fourier.
intro. generalize (exp_pos 1) ; intros ; fourier.
apply Rinv_neq_0_compat. intro. generalize (exp_pos 1) ; intros ; fourier.
apply not_0_INR ; intuition.
apply Rinv_neq_0_compat. intro. generalize (exp_pos 1) ; intros ; fourier.
apply not_0_INR ; intuition.
intro ; fourier.
apply pow_nonzero. apply not_0_INR ; intuition.
apply pow_nonzero. apply Rinv_neq_0_compat. intro. generalize (exp_pos 1) ; intros ; fourier.
apply Rmult_integral_contrapositive ; split.
apply pow_nonzero. apply not_0_INR ; intuition.
apply pow_nonzero. apply Rinv_neq_0_compat. intro. generalize (exp_pos 1) ; intros ; fourier.
intro H. apply sqrt_eq_0 in H. generalize H. apply not_0_INR ; intuition.
apply pos_INR.
apply Rmult_integral_contrapositive ; split.
apply Rmult_integral_contrapositive ; split.
apply pow_nonzero. apply not_0_INR ; intuition.
apply pow_nonzero. apply Rinv_neq_0_compat. intro. generalize (exp_pos 1) ; intros ; fourier.
intro H. apply sqrt_eq_0 in H. generalize H. apply not_0_INR ; intuition.
apply pos_INR.
apply Hneq.
apply pow_nonzero. intro ; fourier.
apply pow_nonzero. apply not_0_INR ; intuition.
apply Rmult_integral_contrapositive ; split.
apply pow_nonzero. intro ; fourier.
apply pow_nonzero. apply not_0_INR ; intuition.
apply pow_nonzero. apply Rinv_neq_0_compat. intro. generalize (exp_pos 1) ; intros ; fourier.
apply Rmult_integral_contrapositive ; split.
apply Rmult_integral_contrapositive ; split.
apply pow_nonzero. intro ; fourier.
apply pow_nonzero. apply not_0_INR ; intuition.
apply pow_nonzero. apply Rinv_neq_0_compat. intro. generalize (exp_pos 1) ; intros ; fourier.
intro H. apply sqrt_eq_0 in H. generalize H. apply Rmult_integral_contrapositive ; split.
intro ; fourier.
apply not_0_INR. intuition.
apply Rmult_le_pos. intuition.
intuition.
apply Rmult_integral_contrapositive ; split.
apply Rmult_integral_contrapositive ; split.
apply Rmult_integral_contrapositive ; split.
apply pow_nonzero. intro ; fourier.
apply pow_nonzero. apply not_0_INR ; intuition.
apply pow_nonzero. apply Rinv_neq_0_compat. intro. generalize (exp_pos 1) ; intros ; fourier.
intro H. apply sqrt_eq_0 in H. generalize H. apply Rmult_integral_contrapositive ; split.
intro ; fourier.
apply not_0_INR. intuition.
apply Rmult_le_pos. intuition. intuition.
assumption.
apply PI_neq0.
apply Rmult_integral_contrapositive ; split.
apply Rmult_integral_contrapositive ; split.
apply Rmult_integral_contrapositive ; split.
apply Rmult_integral_contrapositive ; split.
apply pow_nonzero. intro ; fourier.
apply pow_nonzero. apply not_0_INR ; intuition.
apply pow_nonzero. apply Rinv_neq_0_compat. intro. generalize (exp_pos 1) ; intros ; fourier.
intro H. apply sqrt_eq_0 in H. generalize H. apply Rmult_integral_contrapositive ; split.
intro ; fourier.
apply not_0_INR. intuition.
apply Rmult_le_pos. intuition. intuition.
assumption.
apply Rmult_integral_contrapositive ; split.
apply PI_neq0.
apply Rmult_integral_contrapositive ; split.
apply Rmult_integral_contrapositive ; split.
apply Rmult_integral_contrapositive ; split.
apply Rmult_integral_contrapositive ; split.
apply pow_nonzero. intro ; fourier.
apply pow_nonzero. apply not_0_INR ; intuition.
apply pow_nonzero. apply Rinv_neq_0_compat. intro. generalize (exp_pos 1) ; intros ; fourier.
intro H. apply sqrt_eq_0 in H. generalize H. apply Rmult_integral_contrapositive ; split.
intro ; fourier.
apply not_0_INR. intuition.
apply Rmult_le_pos. intuition. intuition.
assumption.
apply Rmult_integral_contrapositive ; split.
apply Rmult_integral_contrapositive ; split.
apply Rmult_integral_contrapositive ; split.
apply pow_nonzero. apply not_0_INR ; intuition.
apply pow_nonzero. apply Rinv_neq_0_compat. intro. generalize (exp_pos 1) ; intros ; fourier.
intro H. apply sqrt_eq_0 in H. generalize H. apply not_0_INR. intuition.
apply pos_INR. assumption.
eapply Rseq_equiv_cv_compat.
2: reflexivity.
symmetry; instantiate (1 := (1 × (Rsqr l / PI × exp 1) × /exp 1 × /2)).
apply Rseq_equiv_mult_compat ; [ | apply Rseq_equiv_eq ; ∃ O ; intro ; intuition ].
apply Rseq_equiv_mult_compat.
apply Rseq_equiv_mult_compat ; [ | apply Rseq_equiv_eq ; ∃ O ; intro ; intuition ].
pose (Un := (fun n ⇒ - / (2 × INR n + 1))%R).
assert (Hcv0 : Rseq_cv Un 0). unfold Un.
apply Rseq_cv_inv_INR_0_1.
intros eps Heps.
destruct (DL_sqrt_1 Un Hcv0 eps Heps) as (N, DL).
∃ N.
intros n HN. generalize (DL n HN). intros DL1.
unfold Rseq_constant, Rseq_plus, Rseq_minus, Rseq_mult, Rseq_inv, Un in ×.
rewrite <-sqrt_div ; [ | (apply Rmult_le_pos ; intuition) | intuition ].
rewrite S_INR. rewrite mult_INR. do 2 rewrite S_INR.
replace (2 × n)%R with ((2 × n + 1) - 1)%R by ring. rewrite Rplus_0_l.
unfold Rminus. rewrite Rinv_plus.
rewrite Rinv_eq_1. unfold Rdiv in ×. rewrite Ropp_mult_distr_l_reverse. rewrite Rmult_1_l. rewrite Rabs_minus_sym in DL1. apply DL1.
generalize (pos_INR n) ; intuition ; fourier.
generalize (pos_INR n) ; intuition ; fourier.
apply Rseq_equiv_trans with (fun n : nat ⇒ exp ((2 × n + 1) × ln (1 - /(2 × INR n + 1)))).
pose (Un := (fun n:nat ⇒ - /(2 × (INR n) + 1))%R).
assert (Hcv0 : Rseq_cv Un 0).
apply Rseq_cv_inv_INR_0_1.
apply Rseq_equiv_trans with (fun n : nat ⇒ exp ((2 × n + 1) × (- / (2 × n + 1)))).
apply Rseq_equiv_eq. ∃ O. intros n Hn.
field_simplify ((2 × n + 1) × - / (2 × n + 1))%R. unfold Rseq_constant, Rseq_inv.
rewrite <- exp_Ropp. unfold Rdiv. rewrite Rinv_1. rewrite Rmult_1_r. reflexivity.
generalize (pos_INR n) ; intuition ; fourier.
apply Rseq_equiv_continuity with ((-1)).
reg.
generalize (exp_pos (-1)) ; intros l1 H1 ; fourier.
apply Rseq_cv_eq_compat with (-R1).
intros n. unfold Rseq_constant, Rseq_minus, Rseq_plus, Rseq_opp.
field. intros H1 ; generalize (pos_INR n) ; intros ; fourier.
intuition.
eapply Rseq_equiv_cv_compat.
2: reflexivity.
symmetry; instantiate (1 := (fun n ⇒ (2 × INR n + 1) × - / (2 × INR n + 1))%R).
apply Rseq_equiv_mult_compat.
apply Rseq_equiv_refl.
apply Rseq_equiv_sym. apply Rseq_equiv_ln.
apply Hcv0.
apply Rseq_cv_eq_compat with (-R1).
unfold Rseq_opp, Rseq_constant, Rseq_minus.
intros n. field. generalize (pos_INR n) ; intuition ; fourier.
intuition.
apply Rseq_equiv_eq.
∃ 1%nat.
intros n Hn.
rewrite pow_exp_ln.
replace (2 × n)%R with ((2 × n + 1) - 1)%R by ring.
rewrite S_INR. rewrite mult_INR. repeat rewrite S_INR.
rewrite Rplus_0_l.
unfold Rminus. rewrite Rinv_plus. rewrite Rinv_eq_1.
ring_simplify (2 × n + 1 + -1 + 1)%R. unfold Rdiv. ring_simplify (1 + -1 × / (2 × n + 1))%R.
rewrite (Rplus_comm (- / (2 × n + 1)) _). reflexivity.
generalize (pos_INR n) ; intuition ; fourier.
generalize (pos_INR n) ; intuition ; fourier.
unfold Rdiv. apply Rmult_lt_0_compat. apply Rmult_lt_0_compat ; intuition.
apply Rinv_0_lt_compat.
rewrite S_INR. generalize (pos_INR n) ; intuition ; fourier.
apply Rseq_cv_eq_compat with (Rsqr l / (2 × PI)).
intro. unfold Rseq_mult, Rseq_plus, Rseq_constant, Rseq_div, Rseq_inv.
field. split.
apply PI_neq0.
intro. generalize (exp_pos 1) ; intros ; fourier.
intros eps Heps. ∃ O. intros n Hn.
unfold R_dist. unfold Rseq_constant, Rseq_div, Rseq_inv, Rseq_mult.
unfold Rdiv, Rsqr. rewrite Rminus_diag_eq.
rewrite Rabs_R0. apply Heps.
ring.
Qed.
End Wallis.
Rint (sin_n n) 0 (PI/2) Wn→
Rint (sin_n (S (S n))) 0 (PI/2) (Wn × (S n)/(S (S n))).
Proof.
intros Wn n H.
pose (RiemannInt (integrable_sin_n (S (S n)))) as W2n.
pose proof (Rint_RiemannInt_link _ _ _ (integrable_sin_n (S (S n)))) as HW2.
assert (W2n = (S n) × (Wn - W2n)) as Heq.
replace (S n × (Wn - W2n)) with
(comp (fun x ⇒ x ^ (S n)) sin (PI/2) *((- cos)%F (PI/2)) - comp (fun x ⇒ x ^ (S n)) sin 0 *((- cos)%F 0) - (-(S n) × (Wn - W2n))).
eapply Rint_parts with (f' := fun x ⇒ ((S n) × sin x ^ n)* cos x) (g' := sin).
left; apply PI2_RGT_0.
intros.
apply derivable_pt_lim_comp.
auto with Rcont.
apply derivable_pt_lim_pow.
intros.
replace (sin x) with (- - sin x) by ring.
auto with Rcont.
intros.
apply continuity_pt_mult.
apply continuity_pt_mult; auto with Rcont.
apply continuity_pt_const; intros u v; reflexivity.
reg.
auto with Rcont.
auto with Rcont.
apply Rint_eq_compat with (comp (fun x : R ⇒ x ^ S (S n)) sin).
intros; unfold comp, mult_fct; simpl; ring.
apply Rint_RiemannInt_link.
apply Rint_eq_compat with (fun x ⇒ (- S n) × (sin x ^ n - sin x ^ (S (S n)))).
intros.
unfold mult_fct, opp_fct.
rewrite Rmult_assoc.
replace (cos x × - cos x) with (-(1 - (sin x)^2)).
unfold Rsqr; simpl; ring.
replace ((sin x) ^ 2) with ((sin x)²) by (unfold Rsqr; ring).
rewrite <- (cos2 x); unfold Rsqr; ring.
apply Rint_scalar_mult_compat_l.
apply Rint_minus; trivial.
unfold opp_fct, comp;
rewrite cos_0, cos_PI2, sin_PI2, sin_0;
simpl; ring.
replace (Wn × S n / S (S n)) with (W2n).
trivial.
rewrite Rmult_comm.
replace W2n with (/(S (S n)) × (S (S n))* W2n).
replace Wn with ((Wn - W2n) + W2n) by ring.
rewrite Rmult_plus_distr_l.
rewrite <- Heq.
unfold Rdiv.
rewrite Rmult_comm with (r1 := (W2n + S n × W2n)).
rewrite Rmult_assoc.
apply Rmult_eq_compat_l.
simpl; ring.
field.
auto with ×.
Qed.
Lemma Wallis_even : ∀ n, Rint (sin_n (2 × n)) 0 (PI/2) (W_even n).
Proof.
unfold W_even.
induction n.
simpl; unfold Rsqr; field_simplify; apply Wallis_0.
apply Rint_eq_compat with (sin_n (S (S (2 × n)))).
intros; simpl;
replace (S (n + S (n + 0))) with (S (S (n + (n + 0)))) by auto;
reflexivity.
replace (PI / 2 × fact (2 × S n) / (2 ^ (2 × S n) × (fact (S n)) ^2)) with
((PI / 2 × fact (2 × n) / (2 ^ (2 × n) × (fact n)^2)) × S (2 × n) / (S (S (2 × n)))).
apply Wallis_formula; apply IHn.
replace (2 × S n)%nat with (S (S (2 × n))) by auto with ×.
repeat rewrite fact_simpl.
repeat rewrite <- tech_pow_Rmult.
unfold Rsqr.
replace (S (S (2×n))) with (2 × (S n))%nat by auto with ×.
repeat rewrite mult_INR.
replace (INR 2) with 2 by trivial; field.
repeat split.
apply not_0_INR; apply fact_neq_0.
auto with ×.
apply pow_nonzero; pose proof Rlt_R0_R2; intro; fourier.
Qed.
Lemma Wallis_odd : ∀ n, Rint (sin_n (S (2 × n))) 0 (PI/2) ((2^(2×n) × (fact n) ^2)/(fact (S (2 × n)))).
Proof.
unfold W_odd.
induction n.
simpl; replace (1 × (1 × (1×1)) / 1) with 1 by field; apply Wallis_1.
apply Rint_eq_compat with (sin_n (S (S (S (2 × n))))).
intros; simpl.
replace (n + S (n + 0))%nat with (S (n + (n + 0))) by auto;
reflexivity.
replace (2 ^ (2 × S n) × (fact (S n))^2 / fact (S (2 × S n))) with
((2 ^ (2 × n) × (fact n)^2 / fact (S (2 × n))) × (S (S (2 × n)))/(S (S (S (2 × n))))).
apply Wallis_formula; apply IHn.
replace (2 × S n)%nat with (S (S (2 × n))) by auto with ×.
repeat rewrite fact_simpl.
repeat rewrite <- tech_pow_Rmult.
unfold Rsqr.
replace (S (S (2×n))) with (2 × (S n))%nat by auto with ×.
repeat rewrite mult_INR.
replace (INR 2) with 2 by trivial; field.
repeat split;apply not_0_INR; try (auto with × ).
apply fact_neq_0.
Qed.
Lemma Wallis_odd_le_even : ∀ n, W_odd n ≤ W_even n.
Proof.
intro n.
apply (Rint_le_compat (sin_n (S (2 × n))) (sin_n (2 × n)) 0 (PI/2)).
left; apply PI2_RGT_0.
intros; unfold sin_n.
replace (sin u ^ (2 × n)) with (1 × sin u ^ (2 × n)) by ring.
rewrite <- tech_pow_Rmult.
apply Rmult_le_compat_r.
apply pow_le.
apply sin_ge_0; intuition; fourier.
pose proof (SIN_bound u); intuition.
apply Wallis_odd.
apply Wallis_even.
Qed.
Lemma Wallis_even_le_odd : ∀ n, W_even (S n) ≤ W_odd n.
Proof.
intro n.
apply (Rint_le_compat (sin_n (2 × (S n))) (sin_n (S (2 × n))) 0 (PI/2)).
left; apply PI2_RGT_0.
intros; unfold sin_n.
replace (2 × (S n))%nat with (S (S (2 × n))) by auto with ×.
replace (sin u ^ (S (2 × n))) with (1 × sin u ^ (S (2 × n))) by ring.
rewrite <- tech_pow_Rmult.
apply Rmult_le_compat_r.
apply pow_le.
apply sin_ge_0; intuition; fourier.
pose proof (SIN_bound u); intuition.
apply Wallis_even.
apply Wallis_odd.
Qed.
Lemma Wallis_maj : ∀ n : nat, (2×n/ (S (2 × n))) × (W_even n) ≤ W_odd n.
Proof.
intro n.
destruct n.
unfold W_even, W_odd, Rsqr.
simpl; field_simplify; fourier.
replace 2 with (INR 2) by trivial; rewrite <- mult_INR.
replace (2 × S n)%nat with (S (S (2 × n))) by auto with ×.
replace (W_odd (S n)) with (INR (S (S (2 × n))) / INR (S (S (S (2 × n)))) × W_odd n).
apply Rmult_le_compat_l.
unfold Rdiv.
repeat apply Rmult_le_pos; auto with ×.
apply Wallis_even_le_odd.
rewrite Rmult_comm.
unfold Rdiv.
rewrite <- Rmult_assoc.
eapply (Rint_uniqueness _ 0 (PI/2)).
apply Wallis_formula.
apply Wallis_odd.
replace (S (S (2 × n))) with (2 × (S n))%nat by auto with ×.
apply Wallis_odd.
Qed.
Lemma W_even_pos : ∀ n, 0 < W_even n.
Proof.
intro n.
unfold W_even, Rsqr, Rdiv.
repeat apply Rmult_lt_0_compat; try fourier.
now apply Rlt_le_trans with (7 / 8); fourier || apply pi2_int.
now apply INR_fact_lt_0.
repeat rewrite Rinv_mult_distr ; repeat apply Rmult_lt_0_compat.
rewrite Rinv_pow.
apply pow_lt ; fourier.
apply Rgt_not_eq ; fourier.
apply Rinv_0_lt_compat, pow_lt, INR_fact_lt_0.
apply Rgt_not_eq, pow_lt ; fourier.
apply Rgt_not_eq, pow_lt, INR_fact_lt_0.
Qed.
Lemma Wallis_bound : ∀ (n : nat), 2×n / (S(2 × n)) ≤ W_odd n / W_even n ≤ 1.
Proof.
intro n ; split.
apply Rle_trans with (2 × n / S (2 × n) × (W_even n / W_even n)).
right ; field ; split.
apply Rgt_not_eq ; apply W_even_pos.
apply not_0_INR ; discriminate.
unfold Rdiv ; rewrite <- Rmult_assoc ; apply Rmult_le_compat_r.
left ; apply Rinv_0_lt_compat ; apply W_even_pos.
apply Wallis_maj.
rewrite <- Rinv_r with (W_even n).
unfold Rdiv ; apply Rmult_le_compat_r.
left ; apply Rinv_0_lt_compat ; apply W_even_pos.
apply Wallis_odd_le_even.
apply Rgt_not_eq ; apply W_even_pos.
Qed.
Lemma Wallis_quotient_lim1 : Rseq_cv (fun n ⇒ W_odd n / W_even n) 1.
Proof.
apply Rseq_sandwich_theorem
with (Un := fun (n : nat) ⇒ 2 × n / (S (2 × n))) (Wn := fun n ⇒ 1).
apply Rseq_cv_eq_compat with (Un := fun n ⇒ 2 × n / (2 × n + 1)).
intros n.
rewrite S_INR; rewrite mult_INR; reflexivity.
apply Rseq_equiv_cv_div.
apply Rseq_equiv_sym.
apply Rseq_equiv_plus_little_O_compat_l.
apply Rseq_equiv_refl.
apply Rseq_little_O_Rmult_compat_r; [|intro H; fourier].
eapply Rseq_little_O_eq_compat
with (Un := Rseq_poly 0) (Vn := Rseq_poly 1).
intros n; unfold Rseq_poly; apply pow_O.
intros n; unfold Rseq_poly; apply pow_1.
apply Rseq_poly_little_O; constructor.
intros n; assert (H := pos_INR n); intros Hc; fourier.
apply Rseq_constant_cv.
apply Wallis_bound.
Qed.
Lemma Wallis_quotient :
∀ n, W_odd n / W_even n = (2×2 ^ (4×n) × (fact n) ^ 4)/(PI×fact (2 × n) × fact (S (2 × n))).
Proof.
intro n; unfold W_odd, W_even, Rsqr, Rdiv.
replace (2 ^ (4 × n)) with ((2 ^ (2 × n)) × (2 ^ (2 × n))).
field; repeat split.
apply not_0_INR; apply fact_neq_0.
apply not_0_INR; apply fact_neq_0.
apply PI_neq0.
apply not_0_INR; apply fact_neq_0.
apply pow_nonzero; intros H; fourier.
replace (4 × n)%nat with (2 × n + 2 × n)%nat by omega.
rewrite pow_add.
reflexivity.
Qed.
Lemma Rseq_cv_eq_compat1 : ∀ Un Vn l,
{m | ∀ n, (n ≥ m)%nat → Un n = Vn n} →
Rseq_cv Un l → Rseq_cv Vn l.
Proof.
intros Un Vn l Heq Hseq.
intros eps Heps.
destruct Heq as (m, Heq).
destruct (Hseq eps Heps) as (N, Hseq2).
∃ (max N m).
intros n Hn.
assert (Hm : (n ≥ m)%nat). apply le_trans with (max N m) ; intuition.
unfold R_dist in ×.
rewrite <- (Heq n) ; intuition.
apply Hseq2; intuition. apply le_trans with (max N m) ; intuition.
Qed.
Lemma sqrt_id : ∀ n : nat, (INR n ≠ 0)%R → sqrt (2 × n) / (2 × n) = /sqrt (2 × n).
Proof.
intros n H1.
rewrite <- (sqrt_sqrt (2 × n)) at 2.
field.
intro H. apply H1. apply Rmult_eq_reg_l with 2. rewrite Rmult_0_r. apply sqrt_eq_0 ; intuition.
apply Rmult_le_pos ; intuition. intro ; fourier.
apply Rmult_le_pos ; intuition.
Qed.
Lemma Rseq_equiv_eq : ∀ Un Vn,
{m | ∀ n, (n ≥ m)%nat → Un n = Vn n} → Un ¬ Vn.
Proof.
intros Un Vn Heq eps Heps.
destruct Heq as (N, Heq).
∃ N. intros n HN.
unfold Rseq_constant, Rseq_minus, Rseq_plus.
rewrite (Heq n).
ring_simplify (Vn n - Vn n).
rewrite Rabs_R0. apply Rmult_le_pos.
intuition.
apply Rabs_pos.
assumption.
Qed.
Lemma DL_sqrt_1 : ∀ Un, Rseq_cv Un 0 → (fun n ⇒ sqrt (1 + Un n) - 1) = o(1).
Proof.
intros Un Un0.
intros eps Heps.
destruct (Un0 eps Heps) as (N, HUn).
assert (H01 : 0 < 1) by fourier.
destruct (Un0 1 H01) as (N1, HUn1).
∃ (max N N1).
intros n HNmax.
unfold Rseq_constant. rewrite Rabs_R1. rewrite Rmult_1_r.
apply Rle_trans with (Rabs (Un n)).
apply sqrt_var_maj.
unfold R_dist in ×. left.
assert (HN : (n ≥ N1)%nat). apply le_trans with (max N N1) ; intuition.
generalize (HUn1 n HN) ; intros HU1.
rewrite Rminus_0_r in HU1. assumption.
left.
assert (HN : (n ≥ N)%nat). apply le_trans with (max N N1) ; intuition.
generalize (HUn n HN) ; intros HU1.
unfold R_dist in HU1.
rewrite Rminus_0_r in HU1. assumption.
Qed.
Lemma Rseq_cv_inv_INR : Rseq_cv (fun n ⇒ /INR (n + 1)) 0.
Proof.
generalize RinvN_cv. intros useful.
intros eps Heps.
destruct (useful eps Heps) as (N, H).
∃ N.
intros n Hn.
generalize (H n Hn). intros H1.
unfold pos in H1. simpl in H1.
rewrite plus_INR. apply H1.
Qed.
Lemma Rinv_plus : ∀ a b c : R, c ≠ 0 → (a + b) / c = a / c + (b / c).
Proof.
intros a b c d.
field ; apply d.
Qed.
Lemma Rinv_eq_1 : ∀ a, a ≠ 0 → a / a = 1.
Proof.
intros.
field ; assumption.
Qed.
Lemma pow_exp_ln : ∀ x n, 0 < x → x ^ n = exp (n × ln x).
Proof.
intros x n H.
induction n.
simpl. rewrite Rmult_0_l. rewrite exp_0. reflexivity.
rewrite S_INR. rewrite Rmult_plus_distr_r.
rewrite <- tech_pow_Rmult. rewrite exp_plus.
rewrite Rmult_1_l. rewrite exp_ln ; [ | apply H].
rewrite IHn. ring.
Qed.
Lemma Rseq_equiv_ln : ∀ Un, Rseq_cv Un 0 → (fun n ⇒ ln (1 + Un n)) ¬ Un.
Proof.
intros Un Hu.
destruct (Hu 1) as [M HM]; [fourier|].
apply Rseq_equiv_sym.
intros eps Heps.
assert (H1 : 0 < 1) by fourier.
destruct (Rpser_little_O_partial_sum _ Un 1 1 H1 Hu ln_plus_cv_radius eps Heps) as [N HN].
∃ (Max.max M N); intros n Hn.
unfold Rseq_minus; simpl.
pattern Un at 2; replace (Un n) with (Un n ^ 1) by field.
eapply Rle_trans; [right|apply HN].
simpl; rewrite ln_plus_taylor_sum.
rewrite Rabs_minus_sym.
apply f_equal; field.
replace (Un n) with (Un n - 0) by field; apply HM.
eapply le_trans; [apply Max.le_max_l|eassumption].
eapply le_trans; [apply Max.le_max_r|eassumption].
Qed.
Lemma Rseq_cv_inv_INR_0_1 : Rseq_cv (fun n ⇒ - / (2 × INR n + 1))%R 0%R.
Proof.
replace 0 with (-0)%R by intuition. apply Rseq_cv_opp_compat.
generalize RinvN_cv. intros useful.
intros eps Heps;
destruct (Rseq_cv_inv_INR eps Heps) as (N, Hun).
∃ N. intros n Hn.
generalize (Hun n Hn) ; intros Hun1.
apply Rle_lt_trans with (/INR (n + 1))%R.
unfold R_dist. rewrite Rminus_0_r. rewrite Rabs_pos_eq.
apply Rle_Rinv.
generalize (pos_INR n) ; intros ; rewrite plus_INR ; intuition.
generalize (pos_INR n) ; intros ; fourier.
rewrite plus_INR. simpl. apply Rplus_le_compat_r. replace (INR n)%R with ((INR n ) × 1)%R by ring. rewrite Rmult_comm. apply Rmult_le_compat.
intuition.
apply pos_INR.
intuition.
intuition.
left. apply Rinv_0_lt_compat. generalize (pos_INR n) ; intros ; fourier.
unfold R_dist in Hun1. rewrite Rminus_0_r in Hun1. rewrite Rabs_right in Hun1. apply Hun1.
left. apply Rgt_lt. apply Rinv_0_lt_compat. intuition.
Qed.
Lemma Rseq_equiv_continuity : ∀ Un Vn l f, continuity_pt f l →
f l ≠ 0 → Rseq_cv Un l → Rseq_cv Vn l →
(fun n : nat ⇒ f (Un n)) ¬ (fun n : nat ⇒ f (Vn n)).
Proof.
intros Un Vn l f Hcont H0 Hun Hvn.
apply Rseq_equiv_trans with (f l).
apply Rseq_cv_equiv_constant.
assumption.
apply Rseq_cv_continuity_compat ; [assumption | reg].
apply Rseq_equiv_sym.
apply Rseq_cv_equiv_constant.
assumption.
apply Rseq_cv_continuity_compat ; [assumption | reg].
Qed.
Lemma Wallis_quotient_lim2 : ∀ l,
l ≠ 0 →
(fun n ⇒ fact n) ¬ (fun n ⇒ (n /(exp 1)) ^ n × sqrt n × l) →
Rseq_cv (fun n ⇒ W_odd n / W_even n) (l^2/(2×PI)).
Proof.
intros l Hneq Hl.
apply Rseq_cv_eq_compat with (fun n ⇒ (2×2 ^ (4×n) × (fact n) ^ 4)/(PI×fact (2 × n) × fact (S (2 × n)))).
intro; rewrite Wallis_quotient; reflexivity.
assert (H2n : (fun n ⇒ fact (2 × n)) ¬ (fun n ⇒ (2 × n / exp 1) ^ (2 × n) × sqrt (2 × n) × l)).
assert (Hex : is_extractor (mult 2)).
intros n; omega.
pose (exist _ _ Hex) as db.
assert (Hrw1 : extracted db fact == (fun n ⇒ fact (2 × n))).
intros n; reflexivity.
assert (Hrw2 : extracted db (fun n ⇒ (n / exp 1) ^ n × sqrt n × l) == (fun n ⇒ (2 × n / exp 1) ^ (2 × n) × sqrt (2 × n) × l)).
intros n; unfold extracted. simpl.
repeat rewrite plus_INR; simpl.
replace (n + (n + 0)) with (2 × n) by field.
reflexivity.
eapply Rseq_equiv_eq_compat; [eassumption|eassumption|].
apply Rseq_equiv_subseq_compat with (Un := fact) (Vn := fun k : nat ⇒ (k / exp 1) ^ k × sqrt k × l) (phi := db).
assumption.
assert (H2n1 : (fun n : nat ⇒ fact (S(2×n))) ¬ (fun n : nat ⇒ (S(2×n) / exp 1) ^ (S(2×n)) × sqrt (S(2×n)) × l)).
assert (Hex : is_extractor (fun n ⇒ S (mult 2 n))).
intros n; omega.
pose (exist _ _ Hex) as db.
apply Rseq_equiv_eq_compat with (extracted db fact) (extracted db (fun n : nat ⇒ (n / exp 1) ^ n × sqrt n × l)).
intro n; unfold db; reflexivity.
intro n; unfold db; reflexivity.
apply Rseq_equiv_subseq_compat with (Un := fact) (Vn := fun k : nat ⇒ (k / exp 1) ^ k × sqrt k × l)(phi := db).
assumption.
apply Rseq_equiv_cv_constant.
Open Local Scope Rseq_scope.
apply Rseq_equiv_eq_compat with
(Un := 2 × (fun n ⇒ 2 ^ (4 × n)) × fact × fact × fact × fact ×
/ (PI × (fun n ⇒ fact (2 × n)) × (fun n ⇒ fact (S (2 × n))))) (Vn := (l^2 / (2 × PI))%R).
intro n; unfold Rseq_mult, Rseq_inv, Rdiv, Rseq_constant; ring.
intro; reflexivity.
apply Rseq_equiv_trans with
(2 × (fun n ⇒ 2 ^ (4 × n)) × ((fun n : nat ⇒ ((n / exp 1) ^ n × sqrt n × l)%R))*((fun n : nat ⇒ ((n / exp 1) ^ n × sqrt n × l)%R))*((fun n : nat ⇒ ((n / exp 1) ^ n × sqrt n × l)%R))*((fun n : nat ⇒ ((n / exp 1) ^ n × sqrt n × l)%R))*
/ (PI × (fun n : nat ⇒ ((2 × n / exp 1) ^ (2 × n) × sqrt (2 × n) × l)%R) × (fun n ⇒ (S (2 × n) / exp 1) ^ S (2 × n) × sqrt (S (2 × n)) × l)%R)).
repeat apply Rseq_equiv_mult_compat;
try apply Rseq_equiv_refl; try assumption.
apply Rseq_equiv_inv_compat.
∃ O. intros n Hn.
unfold Rseq_mult, Rseq_constant.
apply Rmult_integral_contrapositive ; split ;
[ apply Rmult_integral_contrapositive ; split ;
[ apply PI_neq0 | apply INR_fact_neq_0] | apply INR_fact_neq_0 ].
∃ (S O). intros n Hn; unfold Rseq_mult, Rseq_constant.
assert(H : {m | n = S m}). ∃ (pred n). intuition.
destruct H as (m, Subst).
rewrite Subst.
apply Rmult_integral_contrapositive ; split ;
[ apply Rmult_integral_contrapositive ; split ;
[ apply PI_neq0 | apply Rmult_integral_contrapositive ; split ;
[ apply Rmult_integral_contrapositive ; split ;
[ (apply pow_nonzero ; unfold Rdiv ; apply Rmult_integral_contrapositive ; split ;
[ apply Rmult_integral_contrapositive ; split ;
[ (intro ; fourier) | (apply not_0_INR ; intuition) ] | (apply Rinv_neq_0_compat ; generalize (exp_pos 1) ; intros ; intro ; fourier)])
| (intro H ; apply sqrt_eq_0 in H ; [ (apply Rmult_integral in H ; destruct H as [H|H] ; [ fourier | (generalize H ; apply not_0_INR ; intuition) ])
| apply Rmult_le_pos ; intuition ]) ]
| apply Hneq ] ] | apply Rmult_integral_contrapositive ; split ;
[ apply Rmult_integral_contrapositive ; split ;
[ (apply pow_nonzero ; unfold Rdiv ; apply Rmult_integral_contrapositive ; split ;
[ apply not_0_INR ; intuition | (apply Rinv_neq_0_compat ; generalize (exp_pos 1) ; intros ; intro ; fourier) ])
| (intro H ; apply sqrt_eq_0 in H ; [ (apply not_0_INR in H ; intuition )
| apply pos_INR ])
] | apply Hneq ] ].
apply Rseq_equiv_mult_compat.
apply Rseq_equiv_mult_compat.
apply Rseq_equiv_refl.
assumption.
assumption.
clear Hl H2n H2n1.
apply Rseq_cv_equiv_constant.
unfold Rdiv.
apply Rmult_integral_contrapositive ; split .
apply pow_nonzero; assumption.
apply Rinv_neq_0_compat.
apply Rmult_integral_contrapositive; split.
intro ; fourier.
apply PI_neq0.
unfold Rseq_constant, Rseq_mult, Rseq_div, Rseq_plus, Rseq_minus, Rseq_inv.
apply Rseq_cv_eq_compat1 with
(fun n:nat ⇒ (sqrt (2 × n) / sqrt (S (2 × n))) × (Rsqr l / PI × exp 1) × ((2 × n) / S (2 × n)) ^ (S (2 × n)) × /2)%R.
∃ (S O). intros n Hn.
assert(H : {m | n = S m}). ∃ (pred n). intuition.
destruct H as (m, Subst).
unfold Rseq_constant.
unfold Rdiv.
ring_simplify.
replace (sqrt n ^ 4) with (n ^ 2) by (rewrite <- (sqrt_sqrt n) at 1 ; [ring | intuition]).
repeat rewrite Rpow_mult_distr.
repeat rewrite <- pow_mult.
repeat rewrite Rinv_mult_distr.
replace (2 ^ (4 × n))%R with (2 ^ (2 × n) × 2 ^ (2 × n))%R by (repeat rewrite pow_mult ;
rewrite <- Rpow_mult_distr ; replace (2 ^ 2 × 2 ^ 2)%R with (2 ^ 4)%R by (unfold pow ; ring) ; ring).
rewrite (mult_comm n 4).
replace (n ^ (4 × n))%R with (n ^ (2 × n) × n ^ (2 × n))%R by
(rewrite <- pow_add ; ring_simplify (2 × n + 2 × n)%nat ; ring).
replace ((/exp 1) ^ (4 × n))%R with ((/exp 1) ^ (2 × n) × (/exp 1) ^ (2 × n))%R by
(rewrite <- pow_add ; ring_simplify (2 × n + 2 × n)%nat ; ring).
repeat rewrite Rinv_pow. rewrite Rinv_involutive.
rewrite <- tech_pow_Rmult with (exp 1) (2 × n)%nat.
rewrite <- (Rinv_pow (exp 1) _).
do 2 rewrite <- tech_pow_Rmult.
replace (/sqrt (2 × n))%R with (sqrt (2 × n) / (2 × n))%R by (apply sqrt_id ; inversion Hn ; [intuition | apply not_0_INR ; intuition]).
unfold Rsqr. unfold Rdiv.
repeat rewrite <- Rinv_pow. field.
split. assumption.
split. intro H. apply sqrt_eq_0 in H. apply not_0_INR in H. assumption.
intuition.
intuition.
split. apply pow_nonzero. apply not_0_INR. intuition.
split. apply not_0_INR. intuition.
split. apply pow_nonzero. apply not_0_INR. intuition.
split. apply pow_nonzero. intro. fourier.
split. apply PI_neq0.
apply pow_nonzero. intro. generalize (exp_pos 1) ; intros ; fourier.
apply not_0_INR. intuition.
intro ; fourier.
apply not_0_INR. intuition.
intro. generalize (exp_pos 1) ; intros ; fourier.
intro. generalize (exp_pos 1) ; intros ; fourier.
apply Rinv_neq_0_compat. intro. generalize (exp_pos 1) ; intros ; fourier.
apply not_0_INR ; intuition.
apply Rinv_neq_0_compat. intro. generalize (exp_pos 1) ; intros ; fourier.
apply not_0_INR ; intuition.
intro ; fourier.
apply pow_nonzero. apply not_0_INR ; intuition.
apply pow_nonzero. apply Rinv_neq_0_compat. intro. generalize (exp_pos 1) ; intros ; fourier.
apply Rmult_integral_contrapositive ; split.
apply pow_nonzero. apply not_0_INR ; intuition.
apply pow_nonzero. apply Rinv_neq_0_compat. intro. generalize (exp_pos 1) ; intros ; fourier.
intro H. apply sqrt_eq_0 in H. generalize H. apply not_0_INR ; intuition.
apply pos_INR.
apply Rmult_integral_contrapositive ; split.
apply Rmult_integral_contrapositive ; split.
apply pow_nonzero. apply not_0_INR ; intuition.
apply pow_nonzero. apply Rinv_neq_0_compat. intro. generalize (exp_pos 1) ; intros ; fourier.
intro H. apply sqrt_eq_0 in H. generalize H. apply not_0_INR ; intuition.
apply pos_INR.
apply Hneq.
apply pow_nonzero. intro ; fourier.
apply pow_nonzero. apply not_0_INR ; intuition.
apply Rmult_integral_contrapositive ; split.
apply pow_nonzero. intro ; fourier.
apply pow_nonzero. apply not_0_INR ; intuition.
apply pow_nonzero. apply Rinv_neq_0_compat. intro. generalize (exp_pos 1) ; intros ; fourier.
apply Rmult_integral_contrapositive ; split.
apply Rmult_integral_contrapositive ; split.
apply pow_nonzero. intro ; fourier.
apply pow_nonzero. apply not_0_INR ; intuition.
apply pow_nonzero. apply Rinv_neq_0_compat. intro. generalize (exp_pos 1) ; intros ; fourier.
intro H. apply sqrt_eq_0 in H. generalize H. apply Rmult_integral_contrapositive ; split.
intro ; fourier.
apply not_0_INR. intuition.
apply Rmult_le_pos. intuition.
intuition.
apply Rmult_integral_contrapositive ; split.
apply Rmult_integral_contrapositive ; split.
apply Rmult_integral_contrapositive ; split.
apply pow_nonzero. intro ; fourier.
apply pow_nonzero. apply not_0_INR ; intuition.
apply pow_nonzero. apply Rinv_neq_0_compat. intro. generalize (exp_pos 1) ; intros ; fourier.
intro H. apply sqrt_eq_0 in H. generalize H. apply Rmult_integral_contrapositive ; split.
intro ; fourier.
apply not_0_INR. intuition.
apply Rmult_le_pos. intuition. intuition.
assumption.
apply PI_neq0.
apply Rmult_integral_contrapositive ; split.
apply Rmult_integral_contrapositive ; split.
apply Rmult_integral_contrapositive ; split.
apply Rmult_integral_contrapositive ; split.
apply pow_nonzero. intro ; fourier.
apply pow_nonzero. apply not_0_INR ; intuition.
apply pow_nonzero. apply Rinv_neq_0_compat. intro. generalize (exp_pos 1) ; intros ; fourier.
intro H. apply sqrt_eq_0 in H. generalize H. apply Rmult_integral_contrapositive ; split.
intro ; fourier.
apply not_0_INR. intuition.
apply Rmult_le_pos. intuition. intuition.
assumption.
apply Rmult_integral_contrapositive ; split.
apply PI_neq0.
apply Rmult_integral_contrapositive ; split.
apply Rmult_integral_contrapositive ; split.
apply Rmult_integral_contrapositive ; split.
apply Rmult_integral_contrapositive ; split.
apply pow_nonzero. intro ; fourier.
apply pow_nonzero. apply not_0_INR ; intuition.
apply pow_nonzero. apply Rinv_neq_0_compat. intro. generalize (exp_pos 1) ; intros ; fourier.
intro H. apply sqrt_eq_0 in H. generalize H. apply Rmult_integral_contrapositive ; split.
intro ; fourier.
apply not_0_INR. intuition.
apply Rmult_le_pos. intuition. intuition.
assumption.
apply Rmult_integral_contrapositive ; split.
apply Rmult_integral_contrapositive ; split.
apply Rmult_integral_contrapositive ; split.
apply pow_nonzero. apply not_0_INR ; intuition.
apply pow_nonzero. apply Rinv_neq_0_compat. intro. generalize (exp_pos 1) ; intros ; fourier.
intro H. apply sqrt_eq_0 in H. generalize H. apply not_0_INR. intuition.
apply pos_INR. assumption.
eapply Rseq_equiv_cv_compat.
2: reflexivity.
symmetry; instantiate (1 := (1 × (Rsqr l / PI × exp 1) × /exp 1 × /2)).
apply Rseq_equiv_mult_compat ; [ | apply Rseq_equiv_eq ; ∃ O ; intro ; intuition ].
apply Rseq_equiv_mult_compat.
apply Rseq_equiv_mult_compat ; [ | apply Rseq_equiv_eq ; ∃ O ; intro ; intuition ].
pose (Un := (fun n ⇒ - / (2 × INR n + 1))%R).
assert (Hcv0 : Rseq_cv Un 0). unfold Un.
apply Rseq_cv_inv_INR_0_1.
intros eps Heps.
destruct (DL_sqrt_1 Un Hcv0 eps Heps) as (N, DL).
∃ N.
intros n HN. generalize (DL n HN). intros DL1.
unfold Rseq_constant, Rseq_plus, Rseq_minus, Rseq_mult, Rseq_inv, Un in ×.
rewrite <-sqrt_div ; [ | (apply Rmult_le_pos ; intuition) | intuition ].
rewrite S_INR. rewrite mult_INR. do 2 rewrite S_INR.
replace (2 × n)%R with ((2 × n + 1) - 1)%R by ring. rewrite Rplus_0_l.
unfold Rminus. rewrite Rinv_plus.
rewrite Rinv_eq_1. unfold Rdiv in ×. rewrite Ropp_mult_distr_l_reverse. rewrite Rmult_1_l. rewrite Rabs_minus_sym in DL1. apply DL1.
generalize (pos_INR n) ; intuition ; fourier.
generalize (pos_INR n) ; intuition ; fourier.
apply Rseq_equiv_trans with (fun n : nat ⇒ exp ((2 × n + 1) × ln (1 - /(2 × INR n + 1)))).
pose (Un := (fun n:nat ⇒ - /(2 × (INR n) + 1))%R).
assert (Hcv0 : Rseq_cv Un 0).
apply Rseq_cv_inv_INR_0_1.
apply Rseq_equiv_trans with (fun n : nat ⇒ exp ((2 × n + 1) × (- / (2 × n + 1)))).
apply Rseq_equiv_eq. ∃ O. intros n Hn.
field_simplify ((2 × n + 1) × - / (2 × n + 1))%R. unfold Rseq_constant, Rseq_inv.
rewrite <- exp_Ropp. unfold Rdiv. rewrite Rinv_1. rewrite Rmult_1_r. reflexivity.
generalize (pos_INR n) ; intuition ; fourier.
apply Rseq_equiv_continuity with ((-1)).
reg.
generalize (exp_pos (-1)) ; intros l1 H1 ; fourier.
apply Rseq_cv_eq_compat with (-R1).
intros n. unfold Rseq_constant, Rseq_minus, Rseq_plus, Rseq_opp.
field. intros H1 ; generalize (pos_INR n) ; intros ; fourier.
intuition.
eapply Rseq_equiv_cv_compat.
2: reflexivity.
symmetry; instantiate (1 := (fun n ⇒ (2 × INR n + 1) × - / (2 × INR n + 1))%R).
apply Rseq_equiv_mult_compat.
apply Rseq_equiv_refl.
apply Rseq_equiv_sym. apply Rseq_equiv_ln.
apply Hcv0.
apply Rseq_cv_eq_compat with (-R1).
unfold Rseq_opp, Rseq_constant, Rseq_minus.
intros n. field. generalize (pos_INR n) ; intuition ; fourier.
intuition.
apply Rseq_equiv_eq.
∃ 1%nat.
intros n Hn.
rewrite pow_exp_ln.
replace (2 × n)%R with ((2 × n + 1) - 1)%R by ring.
rewrite S_INR. rewrite mult_INR. repeat rewrite S_INR.
rewrite Rplus_0_l.
unfold Rminus. rewrite Rinv_plus. rewrite Rinv_eq_1.
ring_simplify (2 × n + 1 + -1 + 1)%R. unfold Rdiv. ring_simplify (1 + -1 × / (2 × n + 1))%R.
rewrite (Rplus_comm (- / (2 × n + 1)) _). reflexivity.
generalize (pos_INR n) ; intuition ; fourier.
generalize (pos_INR n) ; intuition ; fourier.
unfold Rdiv. apply Rmult_lt_0_compat. apply Rmult_lt_0_compat ; intuition.
apply Rinv_0_lt_compat.
rewrite S_INR. generalize (pos_INR n) ; intuition ; fourier.
apply Rseq_cv_eq_compat with (Rsqr l / (2 × PI)).
intro. unfold Rseq_mult, Rseq_plus, Rseq_constant, Rseq_div, Rseq_inv.
field. split.
apply PI_neq0.
intro. generalize (exp_pos 1) ; intros ; fourier.
intros eps Heps. ∃ O. intros n Hn.
unfold R_dist. unfold Rseq_constant, Rseq_div, Rseq_inv, Rseq_mult.
unfold Rdiv, Rsqr. rewrite Rminus_diag_eq.
rewrite Rabs_R0. apply Heps.
ring.
Qed.
End Wallis.