Library Coqtail.Complex.CFsequence_facts
Properties of real functions sequences.
Require Import Rsequence_def.
Require Import Rinterval Ranalysis_def.
Require Import Rsequence_cv_facts.
Require Import Rsequence_tactics.
Require Import MyRIneq.
Require Import Canalysis_def.
Require Import Canalysis_deriv.
Require Import Cfunctions.
Require Import Csequence.
Require Import Csequence_facts.
Require Import CFsequence.
Require Import Cnorm.
Require Import Cprop_base.
Require Import Ctacfield.
Require Import Fourier.
Require Import Max.
Open Scope C_scope.
Lemma CFseq_cvu_derivable : ∀ (fn fn' : nat → C → C) (f g : C → C) (z c : C) (r : posreal)
(z_in : Boule c r z),
(∀ (x:C) (n:nat), Boule c r x → derivable_pt_lim (fn n) x (fn' n x)) →
(CFseq_cv_boule fn f c r) →
(CFseq_cvu fn' g c r) →
(∀ (x:C), Boule c r x → continuity_pt g x) →
derivable_pt_lim f z (g z).
Proof.
intros fn fn' f g z c r z_in Dfn_eq_fn' fn_cv_f fn'_cvu_g g_cont eps eps_pos.
assert (eps_8_pos : 0 < eps / 8) by fourier.
destruct (g_cont z z_in (eps/8)%R eps_8_pos) as [delta1 H] ; clear g_cont ; destruct H as [delta1_pos g_cont].
assert (delta_pos : 0 < Rmin ((r - (Cnorm (z - c))) / 2) delta1).
apply Rmin_pos_lt ; [| assumption].
unfold middle, Rdiv ; apply Rlt_mult_inv_pos ; [| fourier].
apply Rlt_Rminus ; rewrite Cnorm_minus_sym ; apply z_in.
pose (delta := mkposreal (Rmin ((r - (Cnorm (z - c))) / 2) delta1) (delta_pos)).
∃ delta ; intros h h_neq h_ub.
pose (eps' := ((Cnorm h) × eps / 4)%R).
assert (eps'_pos : 0 < eps').
unfold eps', Rdiv ; rewrite Rmult_assoc ; apply Rmult_lt_0_compat ;
[apply Cnorm_pos_lt ; assumption | fourier].
destruct (fn_cv_f z z_in eps' eps'_pos) as [Nz fnz_cv_fz].
assert (zh_in : Boule c r (z + h)).
unfold Boule ; simpl ; unfold C_dist.
unfold Cminus ; rewrite Copp_add_distr ; unfold Cminus ; rewrite <- Cadd_assoc ;
apply Rle_lt_trans with (Cnorm (c - z) + Cnorm (-h))%R.
apply Cnorm_triang.
rewrite Cnorm_opp, Cnorm_minus_sym.
apply Rlt_le_trans with (Cnorm (z - c) + delta)%R.
apply Rplus_lt_compat_l ; assumption.
apply Rle_trans with (Cnorm (z - c) + ((r - (Cnorm (z - c))) / 2))%R.
apply Rplus_le_compat_l ; unfold delta ; apply Rmin_l.
apply Rle_trans with ((Cnorm (z - c) + r) / 2)%R.
right ; field.
apply Rle_trans with ((r + r) / 2)%R.
unfold Rdiv ; apply Rmult_le_compat_r ; [fourier |] ; apply Rplus_le_compat_r ;
rewrite Cnorm_minus_sym ; left ; apply z_in.
right ; field.
destruct (fn_cv_f (z + h) zh_in eps' eps'_pos) as [Nzh fnzh_cv_fzh] ; clear fn_cv_f.
destruct (fn'_cvu_g (eps/8)%R eps_8_pos) as [Ng fn'c_cvu_gc] ; clear fn'_cvu_g.
pose (N := max (max Nz Nzh) Ng).
assert (Main : Cnorm ((f (z+h) - fn N (z+h)) - (f z - fn N z) + (fn N (z+h) - fn N z - h × (g z))) < (Cnorm h)*eps).
apply Rle_lt_trans with (Rplus (Cnorm (f (z + h) - fn N (z + h) - (f z - fn N z))) (Cnorm ((fn N (z + h) - fn N z - h × g z)))).
apply Cnorm_triang.
apply Rle_lt_trans with (Rplus (Rplus (Cnorm (f (z + h) - fn N (z + h))) (Cnorm (- (f z - fn N z))))
(Cnorm (fn N (z + h) - fn N z - h × g z))).
apply Rplus_le_compat_r ; apply Cnorm_triang.
rewrite Cnorm_opp.
apply Rlt_le_trans with (Rplus (Rplus eps' (Cnorm (f z - fn N z))) (Cnorm (fn N (z + h) - fn N z - h × g z))).
do 2 apply Rplus_lt_compat_r ; rewrite Cnorm_minus_sym ; apply fnzh_cv_fzh.
unfold ge ; apply le_trans with (max Nz Nzh)%nat ; [apply le_max_r | apply le_max_l].
apply Rle_trans with (Rplus (Rplus eps' eps') (Cnorm (fn N (z + h) - fn N z - h × g z))).
apply Rplus_le_compat_r ; apply Rplus_le_compat_l ; left ; rewrite Cnorm_minus_sym ;
apply fnz_cv_fz ; unfold ge ; apply le_trans with (max Nz Nzh)%nat ; apply le_max_l.
apply Rle_trans with (Cnorm h × eps / 2 + Cnorm h × eps / 2)%R.
apply Rle_trans with (Cnorm h × eps / 4 + Cnorm h × eps / 4 + Cnorm h × eps / 2)%R.
apply Rplus_le_compat_l.
assert (Interval_to_boule : ∀ (t: R), interval 0 1 t → Boule c r (z + t × h)).
intros t t_in ; unfold Boule ; simpl ; unfold C_dist.
replace (c - (z + t × h)) with ((c - z) + - (t×h)).
apply Rle_lt_trans with (Rplus (Cnorm (c - z)) (Cnorm (- (t×h)))) ;
[apply Cnorm_triang | rewrite Cnorm_opp, Cnorm_Cmult].
apply Rle_lt_trans with (Rplus (Cnorm (c - z)) (Cnorm h)).
apply Rplus_le_compat_l ; rewrite <- Rmult_1_l ; apply Rmult_le_compat_r ;
[apply Cnorm_pos | rewrite Cnorm_IRC_Rabs].
clear -t_in ; destruct t_in as [t_lb [t_eq | t_ub]].
left ; apply Rabs_def1 ; [| apply Rlt_le_trans with R0] ; fourier.
subst ; rewrite Rabs_R1 ; right ; reflexivity.
apply Rlt_le_trans with (Rplus (Cnorm (c - z)) delta) ;
[apply Rplus_lt_compat_l ; assumption |].
apply Rle_trans with (Rplus (Cnorm (c - z)) ((r - Cnorm (z - c)) / 2)) ;
[apply Rplus_le_compat_l ; unfold delta ; apply Rmin_l |].
rewrite Cnorm_minus_sym.
field_simplify ; unfold Rdiv ; rewrite Rinv_1, Rmult_1_r.
unfold Boule in z_in ; simpl in z_in ; unfold C_dist in z_in ;
left ; rewrite Cnorm_minus_sym ;
apply (proj2 (middle_is_in_the_middle _ _ z_in)).
unfold Cminus ; rewrite Copp_add_distr ;
rewrite Cadd_assoc ; reflexivity.
assert (fn_deriv : ∀ t : R, interval 0 1 t → derivable_pt (fn N) (z + t × h)).
intros ; ∃ (fn' N (z + t × h)) ; apply Dfn_eq_fn'.
apply Interval_to_boule ; assumption.
destruct (MVT_Cre (fn N) z h fn_deriv h_neq) as [u [u_in_I Hu_bd]].
destruct (MVT_Cim (fn N) z h fn_deriv h_neq) as [v [v_in_I Hv_bd]].
apply Rle_trans with (Rmult (Cnorm h) (Rmult (Cnorm (fn N (z + h) - fn N z - h × g z)) (/ Cnorm h))).
right ; field ; apply Cnorm_no_R0 ; assumption.
unfold Rdiv ; rewrite Rmult_assoc ; apply Rmult_le_compat_l ;
[apply Cnorm_pos |] ; rewrite <- Cnorm_inv, <- Cnorm_Cmult ; [| assumption].
rewrite Cmult_minus_distr_r ; replace (h × g z × / h) with (g z) ; [| field ; assumption].
rewrite <- Cproj_right with ((fn N (z + h) - fn N z) × / h), <- Cproj_right with (g z).
apply Rle_trans with (Cnorm (Rminus (Cre ((fn N (z + h) - fn N z) × / h)) (Cre (g z)),
Rminus (Cim ((fn N (z + h) - fn N z) × / h)) (Cim (g z)))).
right ; apply Cnorm_eq_compat ; CusingR.
apply Rle_trans with (Rplus (Cnorm ((Cre ((fn N (z + h)%C - fn N z) × / h) - Cre (g z))%R, R0))
(Cnorm ((R0 , (Cim ((fn N (z + h)%C - fn N z) × / h) - Cim (g z))%R)))).
apply Rle_trans with (Cnorm (((Cre ((fn N (z + h)%C - fn N z) × / h) - Cre (g z))%R, R0)
+ (R0, (Cim ((fn N (z + h)%C - fn N z) × / h) - Cim (g z))%R))).
right ; apply Cnorm_eq_compat ; CusingR.
apply Cnorm_triang.
rewrite Cnorm_Cre_simpl, Cnorm_Cim_simpl.
unfold Cdiv in Hu_bd, Hv_bd ; rewrite Hu_bd, Hv_bd.
apply Rle_trans with (eps/4 + Rabs (Cim (derive_pt (fn N) (z + v × h) (fn_deriv v v_in_I)) - Cim (g z)))%R.
apply Rplus_le_compat_r.
apply Rle_trans with (Rabs ((Cre (derive_pt (fn N) (z + u × h) (fn_deriv u u_in_I)) - Cre (g (z + u × h)))
+ (Cre (g (z + u × h)) - Cre (g z)))).
right ; apply Rabs_eq_compat ; ring.
apply Rle_trans with (Rplus (Rabs (Cre (derive_pt (fn N) (z + u × h) (fn_deriv u u_in_I)) - Cre (g (z + u × h))))
(Rabs (Cre (g (z + u × h)) - Cre (g z)))) ; [apply Rabs_triang |].
do 2 rewrite Cre_minus_compat.
apply Rle_trans with (Rplus (Cnorm (derive_pt (fn N) (z + u × h) (fn_deriv u u_in_I) - g (z + u × h)))
(Rabs (Cre (g (z + u × h) - g z)))).
apply Rplus_le_compat_r ; apply Cre_le_Cnorm.
apply Rle_trans with (Rplus (Cnorm (derive_pt (fn N) (z + u × h) (fn_deriv u u_in_I) - g (z + u × h)))
(Cnorm (g (z + u × h) - g z))).
apply Rplus_le_compat_l ; apply Cre_le_Cnorm.
apply Rle_trans with (Rplus (eps / 8) (Cnorm (g (z + u × h) - g z))).
apply Rplus_le_compat_r.
assert (zuh_in : Boule c r (z + u ×h)).
apply Interval_to_boule ; assumption.
rewrite (derive_pt_eq_0 _ _ _ (fn_deriv u u_in_I) (Dfn_eq_fn' _ N zuh_in)).
unfold C_dist in fn'c_cvu_gc ; left ; apply fn'c_cvu_gc ;
[unfold N ; apply le_max_r |] ; assumption.
apply Rle_trans with (eps / 8 + eps / 8)%R ; [apply Rplus_le_compat_l | right ; field].
destruct (proj1 u_in_I) as [u_neq | u_eq].
left ; simpl in g_cont ; unfold C_dist in g_cont ; apply g_cont ; split.
unfold Cderiv.D_x, no_cond ; split ; [trivial |].
clear - u_neq h_neq.
intro Hf ; symmetry in Hf ; generalize Hf ; clear Hf ; apply Cadd_neq_compat_l.
apply Cmult_integral_contrapositive_currified ;
[apply IRC_neq_compat ; apply Rgt_not_eq |] ; assumption.
replace (z + u × h - z) with (u × h).
rewrite Cnorm_Cmult ; apply Rlt_le_trans with (1 × delta)%R.
apply Rlt_le_trans with (Cnorm u × delta)%R.
apply Rmult_lt_compat_l ; [apply Cnorm_pos_lt ; apply IRC_neq_compat ;
apply Rgt_not_eq |] ; assumption.
apply Rmult_le_compat_r ; [left ; assumption |].
rewrite Cnorm_IRC_Rabs.
clear -u_in_I ; destruct u_in_I as [u_lb [u_eq | u_ub]].
left ; apply Rabs_def1 ; [| apply Rlt_le_trans with R0] ; fourier.
subst ; rewrite Rabs_R1 ; right ; reflexivity.
rewrite Rmult_1_l ; unfold delta ; apply Rmin_r.
ring.
subst ; rewrite Cmult_0_l, Cadd_0_r ; unfold Cminus ; rewrite Cadd_opp_r, Cnorm_C0 ;
left ; assumption.
apply Rle_trans with (eps / 4 + eps/4)%R ; [apply Rplus_le_compat_l | right ; field].
apply Rle_trans with (Rabs ((Cim (derive_pt (fn N) (z + v × h) (fn_deriv v v_in_I)) - Cim (g (z + v × h)))
+ (Cim (g (z + v × h)) - Cim (g z)))).
right ; apply Rabs_eq_compat ; ring.
apply Rle_trans with (Rplus (Rabs (Cim (derive_pt (fn N) (z + v × h) (fn_deriv v v_in_I)) - Cim (g (z + v × h))))
(Rabs (Cim (g (z + v × h)) - Cim (g z)))) ; [apply Rabs_triang |].
do 2 rewrite Cim_minus_compat.
apply Rle_trans with (Rplus (Cnorm (derive_pt (fn N) (z + v × h) (fn_deriv v v_in_I) - g (z + v × h)))
(Rabs (Cim (g (z + v × h) - g z)))).
apply Rplus_le_compat_r ; apply Cim_le_Cnorm.
apply Rle_trans with (Rplus (Cnorm (derive_pt (fn N) (z + v × h) (fn_deriv v v_in_I) - g (z + v × h)))
(Cnorm (g (z + v × h) - g z))).
apply Rplus_le_compat_l ; apply Cim_le_Cnorm.
apply Rle_trans with (Rplus (eps / 8) (Cnorm (g (z + v × h) - g z))).
apply Rplus_le_compat_r.
assert (zvh_in : Boule c r (z + v ×h)).
apply Interval_to_boule ; assumption.
rewrite (derive_pt_eq_0 _ _ _ (fn_deriv v v_in_I) (Dfn_eq_fn' _ N zvh_in)).
unfold C_dist in fn'c_cvu_gc ; left ; apply fn'c_cvu_gc ;
[unfold N ; apply le_max_r |] ; assumption.
apply Rle_trans with (eps / 8 + eps / 8)%R ; [apply Rplus_le_compat_l | right ; field].
destruct (proj1 v_in_I) as [v_neq | v_eq].
left ; simpl in g_cont ; unfold C_dist in g_cont ; apply g_cont ; split.
unfold Cderiv.D_x, no_cond ; split ; [trivial |].
clear - v_neq h_neq.
intro Hf ; symmetry in Hf ; generalize Hf ; clear Hf ; apply Cadd_neq_compat_l.
apply Cmult_integral_contrapositive_currified ;
[apply IRC_neq_compat ; apply Rgt_not_eq |] ; assumption.
replace (z + v × h - z) with (v × h).
rewrite Cnorm_Cmult ; apply Rlt_le_trans with (1 × delta)%R.
apply Rlt_le_trans with (Cnorm v × delta)%R.
apply Rmult_lt_compat_l ; [apply Cnorm_pos_lt ; apply IRC_neq_compat ;
apply Rgt_not_eq |] ; assumption.
apply Rmult_le_compat_r ; [left ; assumption |].
rewrite Cnorm_IRC_Rabs.
clear -v_in_I ; destruct v_in_I as [v_lb [v_eq | v_ub]].
left ; apply Rabs_def1 ; [| apply Rlt_le_trans with R0] ; fourier.
subst ; rewrite Rabs_R1 ; right ; reflexivity.
rewrite Rmult_1_l ; unfold delta ; apply Rmin_r.
ring.
subst ; rewrite Cmult_0_l, Cadd_0_r ; unfold Cminus ; rewrite Cadd_opp_r, Cnorm_C0 ;
left ; assumption.
right ; field.
right ; field.
apply Rle_lt_trans with (Rmult (Cnorm ((f (z + h) - f z) - h × g z)) (/ Cnorm h)).
rewrite <- Cnorm_inv, <- Cnorm_Cmult ; [| assumption] ; right ; apply Cnorm_eq_compat ;
field ; assumption.
apply Rle_lt_trans with (Rmult (Cnorm (f (z + h) - fn N (z + h) - (f z - fn N z) +
(fn N (z + h) - fn N z - h × g z))) (/ Cnorm h)).
right ; apply Rmult_eq_compat_r ; apply Cnorm_eq_compat ; ring.
apply Rlt_le_trans with ((Cnorm h × eps) × / Cnorm h)%R.
apply Rmult_lt_compat_r ; [rewrite <- Cnorm_inv ; [apply Cnorm_pos_lt ;
apply Cinv_neq_0_compat |] |] ; assumption.
right ; field ; apply Cnorm_no_R0 ; assumption.
Qed.
Definition SFL_interv : ∀ (fn:nat → C → C) (r:posreal)
(cv : ∀ z : C, Boule 0 r z → {l:C | Cseq_cv (fun N:nat ⇒ CFpartial_sum (fun n ⇒ fn n z) N) l }) (y:C), C.
Proof.
intros fn r cv z.
destruct (Rlt_le_dec (Cnorm (0 - z)) r) as [z_bd | z_lb].
unfold Boule in cv ; simpl in cv ; unfold C_dist in cv ;
destruct (cv _ z_bd) as (l, _) ; apply l.
exact 0.
Defined.
Lemma SFL_interv_right : ∀ fn r cv y, Boule 0 r y →
Cseq_cv (fun N:nat ⇒ CFpartial_sum (fun n ⇒ fn n y) N) (SFL_interv fn r cv y).
Proof.
intros fn r cv z z_bd ; unfold SFL_interv ;
destruct (Rlt_le_dec (Cnorm (0 - z)) r) as [z_bd2 | z_lb].
destruct (cv z z_bd2) as [l Hl] ; assumption.
assert (Hf : Cnorm (0 - z) < Cnorm (0 - z)).
apply Rlt_le_trans with r ; unfold Boule in × ; assumption.
elim (Rlt_irrefl _ Hf).
Qed.
Lemma Rlt_minus_exchange : ∀ a b c, a - b < c → a - c < b.
Proof.
intros a b c H ; fourier.
Qed.
Lemma Rlt_plus_exchange : ∀ a b c, a - b < c → a < b + c.
Proof.
intros a b c H ; fourier.
Qed.
Lemma sum_cv_maj : ∀ (An : nat → R) (fn : nat → C → C) (z l1 : C) (l2 : R),
Cseq_cv (fun n : nat ⇒ CFpartial_sum (fun n ⇒ fn n z) n) l1 →
Rseq_cv (fun n : nat ⇒ sum_f_R0 An n) l2 →
(∀ n : nat, Cnorm (fn n z) ≤ An n) → Cnorm l1 ≤ l2.
Proof.
intros An fn z l1 l2 fn_cv An_cv fn_bd.
destruct (Rle_lt_dec (Cnorm l1) l2) as [H | Hf].
assumption.
pose (eps := ((Cnorm l1 - l2) / 4)%R) ;
assert (eps_pos : 0 < eps).
unfold eps, Rdiv ; apply Rlt_mult_inv_pos ; fourier.
destruct (fn_cv _ eps_pos) as [Nfn Hfn] ;
destruct (An_cv _ eps_pos) as [NAn HAn].
pose (N := max Nfn NAn).
assert (Main : Cnorm l1 - eps < l2 + eps).
apply Rlt_trans with (Cnorm (CFpartial_sum (fun n : nat ⇒ fn n z) N)).
apply Rlt_minus_exchange ; apply Rle_lt_trans with (Cnorm (CFpartial_sum (fun n : nat ⇒ fn n z) N - l1)) ;
[apply Cnorm_triang_rev_r | apply Hfn ; apply le_max_l].
apply Rle_lt_trans with (Rabs (sum_f_R0 An N)).
apply Rle_trans with (sum_f_R0 (fun n ⇒ Cnorm (fn n z)) N).
unfold CFpartial_sum ; apply sum_f_C0_triang.
clear - fn_bd ; induction N.
simpl ; rewrite Rabs_right ; [| apply Rle_ge ; apply Rle_trans with (Cnorm (fn O z)) ;
[apply Cnorm_pos |] ] ; apply fn_bd.
simpl ; rewrite Rabs_right.
apply Rle_trans with (Rplus (sum_f_R0 An N) (Cnorm (fn (S N) z))) ;
[apply Rplus_le_compat_r ; rewrite <- Rabs_right ; [apply IHN |] |
apply Rplus_le_compat_l ; apply fn_bd].
apply Rle_ge ; apply cond_pos_sum.
intro n ; apply Rle_trans with (Cnorm (fn n z)) ; [apply Cnorm_pos | apply fn_bd].
rewrite <- tech5 ; apply Rle_ge ; apply cond_pos_sum.
intro n ; apply Rle_trans with (Cnorm (fn n z)) ; [apply Cnorm_pos | apply fn_bd].
apply Rlt_plus_exchange.
apply Rle_lt_trans with (R_dist (sum_f_R0 An N) l2).
apply Rle_trans with (Rminus (Rabs (sum_f_R0 An N)) (Rabs l2)).
replace (Rabs l2) with l2.
right ; reflexivity.
symmetry ; apply Rabs_right.
apply Rle_ge ; apply Rseq_limit_comparison with (fun _ ⇒ R0) (fun n : nat ⇒ sum_f_R0 An n).
intros n ; apply cond_pos_sum ; intro n' ; apply Rle_trans with (Cnorm (fn n' z)) ;
[apply Cnorm_pos | apply fn_bd].
intros ; ∃ O ; intros ; simpl ; unfold R_dist ; rewrite Rminus_0_r, Rabs_R0 ; assumption.
assumption.
unfold R_dist ; apply Rabs_triang_inv.
apply HAn ; apply le_max_r.
assert (Cnorm l1 < Cnorm l1).
apply Rlt_trans with (l2 + 2 × eps)%R.
fourier.
unfold eps.
apply Rle_lt_trans with ((Cnorm l1 + l2) / 2)%R.
right ; field.
rewrite Rplus_comm ; apply (middle_is_in_the_middle _ _ Hf).
elim (Rlt_irrefl _ H).
Qed.
Definition Csigma f low high := sum_f_C0 (fun n : nat ⇒ f (low + n)%nat) (high - low).
Lemma Csigma_split : ∀ (f : nat → C) (low high k : nat),
(low ≤ k)%nat → (k < high)%nat →
Csigma f low high = (Csigma f low k + Csigma f (S k) high).
Proof.
intros f low high k l_le_k k_lt_h.
unfold Csigma.
apply (proj1 (Ceq _ _)) ; split.
rewrite <- Cre_add_compat ; do 3 rewrite <- sum_f_C0_Cre_compat.
assert (H := sigma_split (fun n ⇒ Cre (f n)) l_le_k k_lt_h) ;
unfold sigma in H ; assumption.
rewrite <- Cim_add_compat ; do 3 rewrite <- sum_f_C0_Cim_compat.
assert (H := sigma_split (fun n ⇒ Cim (f n)) l_le_k k_lt_h) ;
unfold sigma in H ; assumption.
Qed.
Lemma sum_maj1 : ∀ (fn : nat → C → C) (An : nat → R) (x l1: C) (l2 : R) (N : nat),
Cseq_cv (fun n : nat ⇒ CFpartial_sum (fun n ⇒ fn n x) n) l1 →
Rseq_cv (fun n : nat ⇒ sum_f_R0 An n) l2 →
(∀ n : nat, Cnorm (fn n x) ≤ An n) →
Cnorm (l1 - CFpartial_sum (fun n ⇒ fn n x) N) ≤ l2 - sum_f_R0 An N.
Proof.
intros fn An x l1 l2 N fn_cv An_cv fn_bd ;
cut { l:C | Cseq_cv (fun n ⇒ sum_f_C0 (fun l ⇒ fn (S N + l)%nat x) n) l }.
intro X;
cut { l:R | Rseq_cv (fun n ⇒ sum_f_R0 (fun l ⇒ An (S N + l)%nat) n) l }.
intro X0; elim X; intros l1N H2.
elim X0; intros l2N H3.
cut (l1 - CFpartial_sum (fun n ⇒ fn n x) N = l1N).
intro Temp; cut (Rminus l2 (sum_f_R0 An N) = l2N).
intro Temp2; rewrite Temp, Temp2.
apply sum_cv_maj with (fun n ⇒ An (S N + n)%nat) (fun I ⇒ fn (S N + I)%nat) x.
assumption.
assumption.
intro n ; apply fn_bd.
symmetry ; eapply Rseq_cv_unique.
apply H3.
unfold Rseq_cv in An_cv |-* ; intros eps eps_pos ; destruct (An_cv _ eps_pos)
as [N' HN'] ; ∃ N' ; intros n n_lb.
unfold R_dist ;
replace (sum_f_R0 (fun l:nat ⇒ An (S N + l)%nat) n - (l2 - sum_f_R0 An N))%R
with (sum_f_R0 An N + sum_f_R0 (fun l:nat ⇒ An (S N + l)%nat) n - l2)%R;
[| ring ].
replace (sum_f_R0 An N + sum_f_R0 (fun l:nat ⇒ An (S N + l)%nat) n)%R with
(sum_f_R0 An (S (N + n)))%R.
apply HN' ; intuition.
assert (N_pos : (0 ≤ N)%nat) by intuition.
assert (N_ub : (N < S (N + n))%nat) by intuition.
intros; assert (H := sigma_split An N_pos N_ub) ; unfold sigma in H.
do 2 rewrite <- minus_n_O in H.
replace (sum_f_R0 An (S (N + n))) with
(sum_f_R0 (fun k:nat ⇒ An (0 + k)%nat) (S (N + n))).
replace (sum_f_R0 An N) with (sum_f_R0 (fun k:nat ⇒ An (0 + k)%nat) N).
assert (Hrew : (S (N + n) - S N)%nat = n) by intuition.
rewrite Hrew in H.
apply H.
apply sum_eq; intros ; reflexivity.
apply sum_eq; intros ; reflexivity.
symmetry ; eapply Cseq_cv_unique.
apply H2.
unfold Rseq_cv in fn_cv |-* ; intros eps eps_pos ; destruct (fn_cv _ eps_pos)
as [N' HN'] ; ∃ N' ; intros n n_lb.
unfold R_dist ;
replace (sum_f_C0 (fun l:nat ⇒ fn (S N + l)%nat x) n - (l1 - CFpartial_sum (fun n0 : nat ⇒ fn n0 x) N))
with ((CFpartial_sum (fun n0 : nat ⇒ fn n0 x) N + sum_f_C0 (fun l:nat ⇒ fn (S N + l)%nat x) n) - l1);
[| ring ].
replace ((CFpartial_sum (fun n0 : nat ⇒ fn n0 x) N + sum_f_C0 (fun l:nat ⇒ fn (S N + l)%nat x) n))
with (CFpartial_sum (fun n0 : nat ⇒ fn n0 x) (S N + n)%nat).
apply HN' ; intuition.
assert (N_pos : (0 ≤ N)%nat) by intuition.
assert (N_ub : (N < S (N + n))%nat) by intuition.
intros; assert (H := Csigma_split (fun n ⇒ fn n x) O (S (N + n)) N N_pos N_ub) ; unfold Csigma in H.
do 2 rewrite <- minus_n_O in H.
replace (CFpartial_sum (fun n0 : nat ⇒ fn n0 x) (S N + n)) with
(sum_f_C0 (fun n : nat ⇒ fn (0 + n)%nat x) (S (N + n))).
replace (CFpartial_sum (fun n0 : nat ⇒ fn n0 x) N) with (sum_f_C0 (fun n : nat ⇒ fn (0 + n)%nat x) N).
assert (Hrew : (S (N + n) - S N)%nat = n) by intuition.
rewrite Hrew in H.
apply H.
unfold CFpartial_sum ; apply sum_f_C0_eq_seq ; intros ; reflexivity.
unfold CFpartial_sum ; apply sum_f_C0_eq_seq ; intros ; reflexivity.
∃ (l2 - sum_f_R0 An N)%R.
unfold Rseq_cv in An_cv |-* ; intros eps eps_pos ; destruct (An_cv _ eps_pos)
as [N' HN'] ; ∃ N' ; intros n n_lb.
unfold R_dist ;
replace (sum_f_R0 (fun l:nat ⇒ An (S N + l)%nat) n - (l2 - sum_f_R0 An N))%R
with (sum_f_R0 An N + sum_f_R0 (fun l:nat ⇒ An (S N + l)%nat) n - l2)%R;
[| ring ].
replace (sum_f_R0 An N + sum_f_R0 (fun l:nat ⇒ An (S N + l)%nat) n)%R with
(sum_f_R0 An (S (N + n)))%R.
apply HN' ; intuition.
assert (N_pos : (0 ≤ N)%nat) by intuition.
assert (N_ub : (N < S (N + n))%nat) by intuition.
intros; assert (H := sigma_split An N_pos N_ub) ; unfold sigma in H.
do 2 rewrite <- minus_n_O in H.
replace (sum_f_R0 An (S (N + n))) with
(sum_f_R0 (fun k:nat ⇒ An (0 + k)%nat) (S (N + n))).
replace (sum_f_R0 An N) with (sum_f_R0 (fun k:nat ⇒ An (0 + k)%nat) N).
assert (Hrew : (S (N + n) - S N)%nat = n) by intuition.
rewrite Hrew in H.
apply H.
apply sum_eq; intros ; reflexivity.
apply sum_eq; intros ; reflexivity.
∃ (l1 - CFpartial_sum (fun n ⇒ fn n x) N).
intros eps eps_pos ; destruct (fn_cv _ eps_pos) as [N' HN'] ; ∃ N' ; intros n n_lb.
replace (sum_f_C0 (fun l:nat ⇒ fn (S N + l)%nat x) n - (l1 - CFpartial_sum (fun n0 : nat ⇒ fn n0 x) N))
with ((CFpartial_sum (fun n0 : nat ⇒ fn n0 x) N + sum_f_C0 (fun l:nat ⇒ fn (S N + l)%nat x) n) - l1);
[| ring ].
replace ((CFpartial_sum (fun n0 : nat ⇒ fn n0 x) N + sum_f_C0 (fun l:nat ⇒ fn (S N + l)%nat x) n))
with (CFpartial_sum (fun n0 : nat ⇒ fn n0 x) (S N + n)%nat).
apply HN' ; intuition.
assert (N_pos : (0 ≤ N)%nat) by intuition.
assert (N_ub : (N < S (N + n))%nat) by intuition.
intros; assert (H := Csigma_split (fun n ⇒ fn n x) O (S (N + n)) N N_pos N_ub) ; unfold Csigma in H.
do 2 rewrite <- minus_n_O in H.
replace (CFpartial_sum (fun n0 : nat ⇒ fn n0 x) (S N + n)) with
(sum_f_C0 (fun n : nat ⇒ fn (0 + n)%nat x) (S (N + n))).
replace (CFpartial_sum (fun n0 : nat ⇒ fn n0 x) N) with (sum_f_C0 (fun n : nat ⇒ fn (0 + n)%nat x) N).
assert (Hrew : (S (N + n) - S N)%nat = n) by intuition.
rewrite Hrew in H.
apply H.
unfold CFpartial_sum ; apply sum_f_C0_eq_seq ; intros ; reflexivity.
unfold CFpartial_sum ; apply sum_f_C0_eq_seq ; intros ; reflexivity.
Qed.
Lemma CVN_CVU_boule :∀ (fn : nat → C → C) (r : posreal)
(cv : ∀ z : C, Boule 0 r z → {l : C | Cseq_cv (fun N : nat ⇒ CFpartial_sum (fun n ⇒ fn n z) N) l}),
CVN_r fn r →
CFseq_cvu (fun N z ⇒ CFpartial_sum (fun n ⇒ fn n z) N) (SFL_interv fn r cv) 0 r.
Proof.
intros fn r cv cvn eps eps_pos.
destruct cvn as [An [l [sum_cv fn_bd]]] ;
destruct (sum_cv eps eps_pos) as [N HN] ;
∃ N ; intros n y n_lb y_bd.
unfold SFL_interv.
destruct (Rlt_le_dec (Cnorm (0 - y)) r) as [y_bd2 | y_lb].
destruct (cv y y_bd2) as [l2 Hl2] ; unfold C_dist.
apply Rle_lt_trans with (Rabs (sum_f_R0 (fun k ⇒ Cnorm (An k)) n - l)).
rewrite <- (Rabs_Ropp (sum_f_R0 (fun k:nat ⇒ Cnorm (An k)) n - l));
rewrite Ropp_minus_distr';
rewrite (Rabs_right (l - sum_f_R0 (fun k:nat ⇒ Cnorm (An k)) n)).
rewrite Cnorm_minus_sym ; eapply sum_maj1.
apply Hl2.
apply sum_cv.
intros ; apply fn_bd ; assumption.
apply Rge_minus ; apply Rle_ge ; apply sum_incr.
assumption.
intros ; apply Cnorm_pos.
unfold R_dist in HN ; apply HN ; assumption.
unfold Boule in y_bd ; simpl in y_bd ; unfold C_dist in y_bd.
assert (Hf : Cnorm (0 - y) < Cnorm (0 - y)).
apply Rlt_le_trans with r ; assumption.
destruct (Rlt_irrefl _ Hf).
Qed.
Lemma CVU_continuity_boule :∀ (fn : nat → C → C) (f : C → C) (c : C) (r : posreal),
CFseq_cvu fn f c r →
(∀ n z, Boule c r z → continuity_pt (fn n) z) →
∀ z, Boule c r z → continuity_pt f z.
Proof.
intros fn f c r fn_cvu fn_cont z z_in.
intros eps eps_pos ; assert (eps_3_pos : 0 < (eps / 3)%R) by fourier ;
destruct (fn_cvu _ eps_3_pos) as [N HN] ;
destruct (fn_cont N z z_in _ eps_3_pos) as [delta1 [delta1_pos Hdelta]].
pose (delta := Rmin delta1 ((r - Cnorm (c - z))/2)) ;
assert (delta_pos : 0 < delta).
unfold delta ; apply Rmin_pos_lt.
assumption.
unfold Rdiv ; apply Rlt_mult_inv_pos ; [apply Rlt_Rminus ; apply z_in | fourier].
∃ delta ; split ; [assumption | intros x [_ Hx]].
simpl ; unfold C_dist.
apply Rle_lt_trans with (Cnorm (f x - fn N x) + Cnorm (fn N x - fn N z) + Cnorm (fn N z - f z))%R.
replace (f x - f z)%C with ((f x - fn N x) + (fn N x - fn N z) + (fn N z - f z))%C by ring.
apply Rle_trans with (Cnorm ((f x - fn N x) + (fn N x - fn N z)) + Cnorm (fn N z - f z))%R ;
[| apply Rplus_le_compat_r] ; apply Cnorm_triang.
apply Rlt_trans with (Cnorm (f x - fn N x) + Cnorm (fn N x - fn N z) + (eps/3))%R.
apply Rplus_lt_compat_l ; apply HN ; trivial.
apply Rlt_trans with (eps/3 + Cnorm (fn N x - fn N z) + eps / 3)%R.
do 2 apply Rplus_lt_compat_r ; rewrite Cnorm_minus_sym ; apply HN ; trivial.
unfold Boule in × ; simpl in × ; unfold C_dist in ×.
replace (c - x)%C with ((c - z) + - (x - z))%C by ring.
apply Rle_lt_trans with (Cnorm (c - z) + Cnorm (- (x - z)))%R ;
[apply Cnorm_triang | rewrite Cnorm_opp].
apply Rlt_trans with (Cnorm (c - z) + delta)%R ;
[apply Rplus_lt_compat_l ; assumption |].
apply Rle_lt_trans with (Cnorm (c - z) + (r - Cnorm (c - z))/2)%R ;
[apply Rplus_le_compat_l ; apply Rmin_r |].
field_simplify ; unfold Rdiv ; rewrite Rinv_1, Rmult_1_r.
apply (middle_is_in_the_middle _ _ z_in).
destruct (Ceq_dec x z) as [eq | neq].
subst ; unfold Cminus ; rewrite Cadd_opp_r, Cnorm_C0 ; fourier.
apply Rlt_le_trans with (eps/3 + eps/3 + eps/3)%R ; [| right ; field].
apply Rplus_lt_compat_r ; apply Rplus_lt_compat_l ; simpl in Hdelta ; apply Hdelta ; split.
unfold Cderiv.D_x, no_cond ; split ; auto.
apply Rlt_le_trans with delta ; [apply Hx | unfold delta ; apply Rmin_l].
Qed.