Library Coqtail.Reals.Dequa.Dequa_examples
Require Import Rsequence_def Rsequence_base_facts.
Require Import Reals Rfunction_def Rfunction_facts Rextensionality.
Require Import Nth_derivative_def Nth_derivative_facts.
Require Import Rpser.
Require Import Rfunction_classes.
Require Import Dequa_def Dequa_facts Dequa_quote.
Require Import List.
Require Import LegacyField_Theory.
Open Local Scope R_scope.
Lemma constant_is_cst : ∀ (c : R) (rc: infinite_cv_radius (constant_seq c)),
∀ x, sum _ rc x = c.
Proof.
intros c rc ; solve_diff_equa ; reflexivity.
Qed.
Lemma identity_is_id : ∀ (ri : infinite_cv_radius identity_seq)
(di : derivable (sum _ ri)), ∀ x, derive (sum _ ri) di x = 1.
Proof.
intros ri di ; solve_diff_equa ; unfold An_deriv, identity_seq,
constant_seq, Rseq_shift, Rseq_mult ; intros [ | n] ; simpl ; ring.
Qed.
Lemma diff_equa_cos : ∀ (rc : infinite_cv_radius cos_seq),
∀ x, nth_derive (sum _ rc) (D_infty_Rpser _ rc 2%nat) x
= - nth_derive (sum _ rc) (D_infty_Rpser _ rc O) x.
Proof.
intro rc ; solve_diff_equa ; intro n ; rewrite An_nth_deriv_S',
An_nth_deriv_1, (An_deriv_ext _ (- sin_seq)).
rewrite An_deriv_opp_compat ; unfold Rseq_opp ;
apply Ropp_eq_compat ; apply Deriv_sin_seq_simpl.
apply Deriv_cos_seq_simpl.
Qed.
Lemma diff_equa_sin : ∀ (rc : infinite_cv_radius sin_seq),
∀ x, nth_derive (sum _ rc) (D_infty_Rpser _ rc 2%nat) x
= - nth_derive (sum _ rc) (D_infty_Rpser _ rc O) x.
Proof.
intro rc ; solve_diff_equa ; intro n ; rewrite An_nth_deriv_S',
An_nth_deriv_1, (An_deriv_ext _ cos_seq) ;
[apply Deriv_cos_seq_simpl | apply Deriv_sin_seq_simpl].
Qed.
Lemma diff_equa_exp : ∀ n (re : infinite_cv_radius exp_seq) x,
nth_derive (sum _ re) (D_infty_Rpser _ re (S n)) x
= nth_derive (sum _ re) (D_infty_Rpser _ re n) x.
Proof.
intros n re ; solve_diff_equa ; rewrite An_nth_deriv_S',
(An_nth_deriv_ext _ exp_seq) ; [reflexivity | apply Deriv_exp_seq_simpl].
Qed.
Require Import Commutative_ring_binomial.
Lemma Rexp_mult_simpl : ∀ a b x,
Rexp (a × x) × Rexp (b × x) = Rexp ((a + b) × x).
Proof.
intros a b ; unfold Rexp ; solve_diff_equa.
admit.
Qed.
Require Import Reals Rfunction_def Rfunction_facts Rextensionality.
Require Import Nth_derivative_def Nth_derivative_facts.
Require Import Rpser.
Require Import Rfunction_classes.
Require Import Dequa_def Dequa_facts Dequa_quote.
Require Import List.
Require Import LegacyField_Theory.
Open Local Scope R_scope.
Lemma constant_is_cst : ∀ (c : R) (rc: infinite_cv_radius (constant_seq c)),
∀ x, sum _ rc x = c.
Proof.
intros c rc ; solve_diff_equa ; reflexivity.
Qed.
Lemma identity_is_id : ∀ (ri : infinite_cv_radius identity_seq)
(di : derivable (sum _ ri)), ∀ x, derive (sum _ ri) di x = 1.
Proof.
intros ri di ; solve_diff_equa ; unfold An_deriv, identity_seq,
constant_seq, Rseq_shift, Rseq_mult ; intros [ | n] ; simpl ; ring.
Qed.
Lemma diff_equa_cos : ∀ (rc : infinite_cv_radius cos_seq),
∀ x, nth_derive (sum _ rc) (D_infty_Rpser _ rc 2%nat) x
= - nth_derive (sum _ rc) (D_infty_Rpser _ rc O) x.
Proof.
intro rc ; solve_diff_equa ; intro n ; rewrite An_nth_deriv_S',
An_nth_deriv_1, (An_deriv_ext _ (- sin_seq)).
rewrite An_deriv_opp_compat ; unfold Rseq_opp ;
apply Ropp_eq_compat ; apply Deriv_sin_seq_simpl.
apply Deriv_cos_seq_simpl.
Qed.
Lemma diff_equa_sin : ∀ (rc : infinite_cv_radius sin_seq),
∀ x, nth_derive (sum _ rc) (D_infty_Rpser _ rc 2%nat) x
= - nth_derive (sum _ rc) (D_infty_Rpser _ rc O) x.
Proof.
intro rc ; solve_diff_equa ; intro n ; rewrite An_nth_deriv_S',
An_nth_deriv_1, (An_deriv_ext _ cos_seq) ;
[apply Deriv_cos_seq_simpl | apply Deriv_sin_seq_simpl].
Qed.
Lemma diff_equa_exp : ∀ n (re : infinite_cv_radius exp_seq) x,
nth_derive (sum _ re) (D_infty_Rpser _ re (S n)) x
= nth_derive (sum _ re) (D_infty_Rpser _ re n) x.
Proof.
intros n re ; solve_diff_equa ; rewrite An_nth_deriv_S',
(An_nth_deriv_ext _ exp_seq) ; [reflexivity | apply Deriv_exp_seq_simpl].
Qed.
Require Import Commutative_ring_binomial.
Lemma Rexp_mult_simpl : ∀ a b x,
Rexp (a × x) × Rexp (b × x) = Rexp ((a + b) × x).
Proof.
intros a b ; unfold Rexp ; solve_diff_equa.
admit.
Qed.